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Abstract: The hybrid cloud is a secure alternative for enterprises to exploit the benefits of cloud
computing to overcome the privacy and security concerns of data in IoT networks. However, in
hybrid cloud IoT, sensitive items such as keys in the private cloud can become compromised due to
internal attacks. Once these keys are compromised, the encrypted data in the public cloud are no
longer secure. This work proposes a secure multilevel privacy-protection scheme based on Generative
Adversarial Networks (GAN) for hybrid cloud IoT. The scheme secures sensitive information in
the private cloud against internal compromises. GAN is used to generate a mask with the input of
sensory data-transformation values and a trapdoor key. GAN’s effectiveness is thoroughly assessed
using Peak Signal-to-Noise Ratio (PSNR), computation time, retrieval time, and storage overhead
frameworks. The obtained results reveal that the security scheme being proposed is found to require a
negligible storage overhead and a 4% overhead for upload/retrieval compared to the existing works.

Keywords: hybrid cloud; security; multilevel privacy protection; generative adversarial networks

1. Introduction

Several enterprises are rapidly adopting cloud computing as their sensory data storage
and computation platform. Benefits such as on-demand resource availability, affordability,
and reliability are the driving factors behind this rapid adoption. The value that cloud
computing brings to enterprises is challenged by increasing data compromises and privacy
vulnerabilities. Data in the cloud can be leaked, modified, and compromised. Thus,
it becomes important to provide security, privacy, and integrity of data to accelerate
the adoption of the cloud among enterprises. To this goal, many solutions based on
anonymization, randomization, cryptographic transformation, diversification, aggregation,
etc. have been proposed. However, a problem in these solutions is scalability and security
against data inference attacks. The hybrid cloud is an architectural-level solution proposed
to provide a reliable solution ensuring enhanced security and privacy in the cloud. The
hybrid cloud has two components—public and private clouds. Data-transformation keys
and other sensitive data items are kept in the private cloud. Transformed data and non-
sensitive data items are kept in the public cloud. The transformed data items in the
public cloud need the keys in the private cloud for restoration, and therefore, the data in
the public cloud are secure and private. Many data-transformation solutions have been
proposed for hybrid cloud architecture to secure the privacy of data. In most schemes,
data-transformation keys and access control parameters are kept in the private cloud, and
they assume a completely trusted private cloud. However, when this assumption is broken
and data-transformation keys in the private cloud become compromised, the data kept
in the public cloud is no longer secure and private. This study addresses this problem
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and proposes a multilevel privacy-protection scheme based on Generative Adversarial
Networks (GANs). Data-transformation keys are transformed into masks using GAN and
stored in the private cloud. These masks are difficult to decipher and, even in the case of
leakage, it is not possible to decipher the data-transformation keys hidden in the masks
without the cooperation of the data owner and the private cloud. Since mask deciphering is
under the joint ownership of the data owner and the private cloud, the data-transformation
keys become secure even in the case of a compromise of data in the private cloud.

Self-Organizing Networks (SON) powered by machine-learning technologies are fast
emerging as a promising design feature for future mobile networks, as demands for in-
creased service needs and enhanced efficiency are rapidly increasing. Large amounts of
real-labeled sample data are needed to train the networks to implement the SON with
machine learning as the foundation. The amounts of sample data invariably have a great
impact on the effective functioning of the algorithm in these networks. The limited avail-
ability of real-labeled data might become a hindrance in the fully fledged implementation
of ML-powered SON [1].

Deep-learning techniques, such as convolutional neural networks, are used to create
generative modeling approaches such as GANs. These approaches are part of unsuper-
vised learning in ML involving tasks such as automatically finding and learning input
data patterns and regularities. These learning models can help in the development of new
models learning the patterns of the original dataset. These training generative models
of supervised learning problem is resolved by applying the GANs. Conventional crypto-
graphic methods are used to modify the data, as the relevance and utility of these methods
cannot be undermined. As an improvement over this, a novel method known as generative
coverless information hiding method, which is based on generative adversarial networks, is
proposed in the present paper. The main idea of this method is that a generative adversarial
network class label is substituted for the information of a secret key as a driver. Confidential
data are directly generated and subsequently, with the help of the discriminator, secret
information is extracted from the hidden data.

ANs comprise two neural networks, of which one is trained to generate data and
the other is trained to identify and put aside fake data from the accurate one. Though
the concept of a structure being used to generate data is not new, GANs have yielded
significant results in terms of generating images and video. For instance, numerous image-
style transformations have been convincingly done with the help of Cycle GAN. Generating
human faces using Style GAN serves as an example of the generative model compared with
discriminative models that are more widespread. This is often seen on the “This Person
Does Not Exist Structures” website.

The novel contributions of this work are (i) a scheme for preserving the security of
private/sensitive data in the private cloud. The scheme has two levels of control: the
first is with the administrator of the hybrid cloud using GAN, and the second is with
the data owner using the Advanced Encryption Standard (AES). The data-transformation
parameters are converted into a mask image and are stored in the private cloud, instead of
being stored in plain form, as discussed in the existing works. Even if the masked image is
leaked, it becomes difficult for attackers to retrieve the transformation parameters due to
these two levels of control.

The rest of the paper is ordered in the following manner. Section 2 presents a survey
on data-security techniques in the cloud and the accompanying issues. Section 3 discusses
a proposed multilevel privacy-protection scheme for securing data in a hybrid cloud. The
results of the proposed solution and a comparison with existing works are discussed in
detail in Section 4, and Section 5 consists of the conclusion and scope of future work.

2. Related Work

Fabian et al. [1] used cryptographic secret sharing along with attribute-based encryp-
tion for secure healthcare data sharing across various departments of the enterprise through
the cloud. The data are split into shares using cryptographic secret sharing and distributed



Electronics 2023, 12, 1638 3 of 14

across multiple clouds. The sharing location and access control parameters are kept in
the cloud, and this can be compromised. Once the location of a few shares in the cloud is
known, data can be reconstructed, and privacy is at stake. Yang et al. [2] proposed a hybrid
cryptographic algorithm to preserve the privacy of data in the cloud. The data are split
vertically and encrypted before being published to the cloud. The partition information and
encryption keys are stored in the cloud. Due to this, the method has a higher security risk
in terms of the compromise of partition information and encryption keys. Zhang et al. [3]
proposed a privacy-preserving data-security scheme for the hybrid cloud called Cocktail.
Data are partitioned using a quasi-identifier partitioning technique. Differential privacy
is provided at the data-querying stage. Though retrieval latency is lower in this method,
it is completely insecure against the leakage of partition information stored in the cloud.
Zhou et al. [4] proposed a data-partition strategy that is independent of applications. The
scheme is designed for the hybrid cloud. However, the security of keys and partition
information is not considered in this work. Lyu et al. [5] proposed two-stage data pertur-
bation to secure data in the hybrid cloud. The data-perturbation scheme is secure against
estimation and independent component analysis attacks. However, the perturbation key is
stored in the private cloud without any ciphering; because of this, the scheme is insecure
against data-compromise attacks. Chen et al. [6] proposed a data-perturbation scheme
to secure data in the cloud. The perturbation involved random sequences of rotation,
translation, and noise addition. Due to geometric property preservation, the perturbed data
are suitable for data-mining operations. The perturbation sequence stored in the private
cloud is insecure against data-compromise attacks. Chen et al. [7] proposed a random
projection-based data perturbation to secure data in the cloud but, as in his early work [6],
the scheme also did not consider a data compromise in the private cloud. Yuan et al. [8]
applied compressed sensing for data perturbation before storage in the cloud. The re-
constructed data have marginal error compared to the original data, and the scheme is
not suitable for text data. The reconstruction matrix is kept in the private cloud and it is
insecure against a data-compromise attack on it. Huang et al. [9] proposed a scheme for
securing images in the hybrid cloud. In this scheme, the image is split into blocks and
shuffled. The shuffled images are stored in the public cloud and the shuffling information
is stored in the private cloud. Even if partial information about the shuffling order is
leaked, the entire image can be reconstructed by the attacker. Abbas et al. [10] combined
cryptography, steganography, and hashing to ensure data privacy in the hybrid cloud. Data
are encrypted with the Rivest–Shamir–Adleman (RSA)/Advanced Encryption Standard
(AES), and the encrypted data are hidden in imagery using LSB. Hashing is used to ensure
the integrity of the data. However, the mechanism is not scalable, and storing keys in the
private cloud with ciphering is insecure. Huang et al. [11] proposed a solution for image
data privacy in the hybrid cloud. The image is split into blocks, which are shuffled in a
random order. In addition, pixel values are modified using a random one-to-one function.
The shuffling order and pixel-mapping function are kept in the cloud, posing a data-leakage
issue. Abrishami et al. [12] proposed a hybrid cloud architecture where sensitive tasks
are scheduled in the cloud assuming the private cloud is completely trusted. Therefore,
security compromises due to internal attacks on the private cloud are not considered in
this work. Xu et al. [13] proposed a sensitive data aggregation scheme for securing data in
the hybrid cloud. The scheme is more suited to big-data computations. Aggregation rules
are stored in the private cloud and, upon leakage of it, the privacy of data in the public
cloud is at risk. Li et al. [14] proposed a convergent encryption scheme for the hybrid cloud
with support for data de-duplication. However, the security of encryption keys during
the compromise of private cloud data is not considered. Saritha et al. [15] enhanced the
security of the private cloud and prevented it from unauthorized access using multilevel
authentication. However, with authorization control, the scheme is not secure against
internal attacks on data. Similarly, Sridhar et al. [16] enhanced the security of the private
cloud using hybrid multilevel authentication. This scheme is not able to secure data from
insider attacks and virtualization attacks. Udendhran et al. [17] combined homomorphic
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encryption combined with user location to secure the data in the cloud. The private cloud
just stores the homomorphic keys and, even if leaked, without user location information,
the encrypted data stored in the public cloud cannot be deciphered. Nagaty et al. [18]
integrated cryptography and access control to secure data in the hybrid cloud. Access
control information along with cryptography keys are stored in the private cloud without
any security. Quershi et al. [19] developed a secure framework for health record storage
based on the hybrid cloud. Keys are stored in the private cloud and, upon leakage of it, the
data in the public cloud is at risk. A summary of the surveys is presented in Table 1.

Table 1. Survey summary.

Solution Summary Gap

Fabian et al. [1] Cryptographic secret sharing along with
attribute-based encryption

Sharing location and the access control parameters are
kept in the cloud, and this can be compromised

Yang et al. [2] Data are split vertically and encrypted before
being published to the cloud

Method has a higher security risk of compromise of
partition information and encryption keys

Zhang et al. [3] Data are partitioned using a quasi-identifier
partitioning technique

Approach is completely insecure against leakage of
partition information stored in the cloud

Zhou et al. [4] Data-partition strategy Security of keys and partition information is not
considered in this work

Lyu et al. [5] Two-stage data perturbation to secure data in the
hybrid cloud Scheme is insecure against data-compromise attacks

Chen et al. [6] Geometric data-perturbation scheme for
securing data

Perturbation sequence stored in the private cloud is
insecure against data-compromise attacks

Chen et al. [7] Random projection-based data perturbation to
secure data in the cloud

Approach did not consider data compromise in
the cloud

Yuan et al. [8] Compressed sensing for data perturbation before
storing in the cloud

Reconstruction matrix is kept in the private cloud, and
it is insecure against data-compromise attacks on it

Huang et al. [9] Securing images on the hybrid cloud by splitting
into blocks and shuffling

Even if partial information on shuffling order is leaked,
the entire image can be reconstructed by the attacker

Abbas et al. [10] Combined cryptography, steganography, and
hashing to ensure data privacy in the hybrid cloud

Mechanism is not scalable, and storing the keys in the
private cloud with ciphering makes it insecure

Huang et al. [11] Pixel values are modified using a random
one-to-one function

Shuffling order and pixel-mapping functions are kept
in the cloud, posing a data-leakage issue

Xu et al. [13] Sensitive data aggregation scheme
Aggregation rules are stored in the private cloud and
upon leakage of it, the privacy of data in the public

cloud is at risk

Li et al. [14] Convergent encryption scheme for the
hybrid cloud

Security of encryption keys during the compromise of
private cloud data is not considered

Saritha et al. [15] Multilevel authentication Scheme is not secure against internal attacks on data

Sridhar et al. [16] Hybrid multilevel authentication Scheme is not able to secure data from insider attacks
and virtualization attacks

Nagaty et al. [18] Integrated cryptography and access control to
secure data in the hybrid cloud

Access control information along with cryptography
keys are stored in the private cloud without

any security

From the survey, it can be seen that most solutions based on the hybrid cloud assume
a fully trust private cloud and advocate the private cloud to be in the administrative region
of an enterprise. Multilevel authentication and intrusion detection has been proposed as
a solution to secure access to the private cloud. However, these schemes are not resilient
against internal attacks. Based on these observations, this work proposes a defensive
mechanism against the leakage of data in the private cloud by internal attackers.
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3. Multilevel Privacy-Protection Scheme

The data handling of the proposed multilevel privacy-protection scheme is given in
Figure 1. The data owner transforms the files and stores the transformed file in the public
cloud. The transformation parameters are usually stored in the private cloud in plain
form. However, in the case of an internal attack and a compromise of the transformation
parameters, the transformed data in the public cloud is at risk. To secure the transformation
parameters, these parameters are stored in a linear array. The data owner also generates a
secret symmetric key. The linear array of transformation parameters is encrypted with a
secret key provided by the data owner using the Advanced Encryption Standard (AES).
The data-transformation parameters are converted to a 2D matrix of size m × n, where
m is the number of rows and n is the number of columns. The linear array is converted
to a matrix, as most existing deep-learning models only work with images that are a 2D
matrix. The 2D matrix is passed to the generator component of the Generative Adversarial
Networks (GAN) to be converted into a masked image. The masked image is stored in
the private cloud. When the data owner wants to view the data, the masked image is
passed to the discriminator component of GAN to retrieve the 2D matrix. The 2D matrix is
flattened into a linear array using row major order, and then decrypted using the AES with
the secret key belonging to the data owner to obtain the transformation parameters. The
transformation parameters are then used to reconstruct the data.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 1. Multilevel privacy-protection architecture. 

In this work, GAN is used to transform the secret cover image selected by the data 

owner according to the encrypted data-transformation matrix to generate a masked image 

as shown in Figure 2. This masked image has the encrypted data-transformation matrix 

embedded as a structural and textural property in the cover image. This masked image is 

stored in the private cloud, instead of storing the data-transformation parameters in raw 

form. When the encrypted data-transformation parameters have to be retrieved from the 

masked image, the data owner selects the masked image. GAN extracts the encrypted 

data-transformation parameters from the masked image. This encrypted data-transfor-

mation matrix is then decrypted with the secret key provided by the owner using AES. 

The decrypted data-transformation matrices are used to decrypt the files stored in the 

public cloud. Therefore, the data owner has more control over the data-transformation 

parameters stored in the private cloud. This method is resilient against data leakages from 

the private cloud due to internal a�acks. From the masked image, it is difficult to retrieve 

the data-transformation parameters, as the a�acker needs to know the GAN model and 

the secret key of the data owner. Due to two levels of protection, a�acks on data due to 

data compromise in the private cloud are defended in the proposed solution. 

���� = ��̅~��
[�(�̅)] − ��̅~��

[�(�)] +  ���̅~��
[(||∇�̅�(�̅)||� − 1)�] (1)

The distribution over V is given as P_r. Figures 3 and 4 depict the GAN configuration 

in terms of the network used for generative and discriminative purposes in this study. 

GAN [20] comprises two different networks: one is generative and one is discriminative. 

The former network creates samples to fool the other network, which tries to determine 

Figure 1. Multilevel privacy-protection architecture.

In this work, GAN is used to transform the secret cover image selected by the data
owner according to the encrypted data-transformation matrix to generate a masked image
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as shown in Figure 2. This masked image has the encrypted data-transformation matrix
embedded as a structural and textural property in the cover image. This masked image
is stored in the private cloud, instead of storing the data-transformation parameters in
raw form. When the encrypted data-transformation parameters have to be retrieved
from the masked image, the data owner selects the masked image. GAN extracts the
encrypted data-transformation parameters from the masked image. This encrypted data-
transformation matrix is then decrypted with the secret key provided by the owner using
AES. The decrypted data-transformation matrices are used to decrypt the files stored in
the public cloud. Therefore, the data owner has more control over the data-transformation
parameters stored in the private cloud. This method is resilient against data leakages from
the private cloud due to internal attacks. From the masked image, it is difficult to retrieve
the data-transformation parameters, as the attacker needs to know the GAN model and the
secret key of the data owner. Due to two levels of protection, attacks on data due to data
compromise in the private cloud are defended in the proposed solution.

LGAN = Ex∼Pg [D(x)]− Ex∼Pr [D(x)] + λEx∼Px

[
(‖∇xD(x)‖2 − 1)2

]
(1)
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Figure 2. Data distribution in the proposed scheme.

The distribution over V is given as Pr. Figures 3 and 4 depict the GAN configuration
in terms of the network used for generative and discriminative purposes in this study.
GAN [20] comprises two different networks: one is generative and one is discriminative.
The former network creates samples to fool the other network, which tries to determine
whether the sample is genuine or has been made by the generative network. With the
competition of both these networks, the generative network produces an almost-accurate
sample. GAN networks are being used to generate synthetic data because of their capability
to adapt to complex distributions. GAN’s objective function is given as Pg. The uniform
samples over Pr and Pg are given as Px.

The conventions used in Figures 3 and 4 are given in Table 2.
Generator (G) either synthesizes or modifies the input cover image based on the en-

crypted data-transformation matrix. The discriminator ascertains whether or not the image
consists of any secret embedding. The encrypted data-transformation matrix is extracted
from the stegno image. From the encrypted data-transformation matrix, the transformation
parameters can be retrieved after AES decryption and used for the decryption of data
stored in the public cloud.
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Table 2. Conventions used in Figures 3 and 4.

Conv Convolution with Kernel Size 5 × 5

Deconv De-convolution

BN Batch normalization

ReLU Rectified Linear Unit

4. Results

The proposed multilevel privacy-protection performance is tested using the Arrhyth-
mia dataset in the UCI machine-learning repository [20]. It is measured based on (i) storage
overhead, (ii) upload time, (iii) retrieval time, and (iv) security strength. The performance
of the solution is compared against combined clustering and the geometric perturba-
tion scheme proposed by Sridhar et al. [21], combined cryptography and steganography
proposed by Abbas et al. [10], and the secure data de-duplication scheme proposed by
Ma et al. [22]. Geometric data perturbation proposed by Sridhar et al. [21] is used as a
data-transformation function in the proposed solution for performance testing.

The performance test was conducted in a hybrid cloud setup with Dropbox as the
public cloud and Ubuntu Linux local VM as the private cloud [23,24]. Accounts were
created in the Dropbox cloud and used for the storage of data. Upload and download
operations were realized using Dropbox python API. The configuration of the machine
used for the private cloud was an Intel core i5-8250U CPU@ 1.8 GHZ, 8 GB memory, and
1 TB disk.

The storage overhead in the private cloud is measured as the memory consumed by
the private cloud for storing the data-transformation parameters for various data volumes.
The result obtained is shown in Table 3.

Table 3. Comparison of storage overhead.

Size (MB)
Storage Overhead (MB)

Proposed Abbas et al. [10] Ma et al. [22] Sridhar et al. [16]

20 1.6 1.4 1.9 1.2

40 2.5 2.4 3.5 1.8

60 4.1 4.3 6.1 3.4

80 6.9 7.8 8.1 7.7

100 7.2 8.3 8.4 8.2

Average 4.46 4.84 5.6 4.46

The average storage overhead in the proposed solution is 8% lower compared to
Abbas et al. and 16% lower compared to Ma et al. [22]. The storage overhead is the same as
that of Sridhar et al. [16].

When compared to the existing models, the storage overhead in the proposed solution
is found to be slightly higher is shown in Figure 5. However, this is significantly reduced
in the private cloud for higher data volumes, as a larger volume of data-transformation
parameter packing is carried out in the same cover image. The higher the amount of data,
the larger the storage overhead. In comparison with the three existing models, the proposed
model displays a higher storage capacity of 80 MB.

The time consumed for data processing—from the point of its arrival to the point of
its storage in the cloud—is shown in Table 4. A remarkable improvement is found in the
method proposed compared to the two existing methods while its performance is found to
be almost equivalent to Sridhar et al. [16].
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Table 4. Comparison of upload time.

Size (MB)
Computation Time (s)

Proposed Abbas et al. [10] Ma et al. [22] Sridhar et al. [16]

20 15 15 18 14

40 21 26 34 20

60 28 48 59 27

80 37 87 110 33

100 39 91 114 38

Average 28 53.4 67 26.4

Compared to the model proposed by Sridhar et al. [16], in the proposed model, the
average time taken for uploading is 5% higher, which is because of the AES encryption
process of the data-transformation parameters and encoding them to the masked image
with the help of GAN and is shown in Figure 6. The uploading time is less when compared
to the other three existing methods. Compared to the proposed model, a considerable
delay is observed in the uploading of the data in the existing methods: 22% compared to
the model proposed by Abbas et al. [10], 32% compared to that of Ma et al. [22], and 5%
compared to that of Sridhar et al. [16].

The time taken for data retrieval including the data decryption is measured for various
volumes of the data and the result is given in Table 5.
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Table 5. Comparison of data retrieval time.

Size (MB)
Retrieval Time (sec)

Proposed Abbas et al. [10] Ma et al. [22] Sridhar et al. [16]

20 14 14 19 13

40 19 24 35 18

60 25.2 43 61 24

80 34 78 72 33

Average 23.05 39.75 46.75 22

In the proposed method, the time consumed for data retrieval is found to be a mere
4% higher compared to the method proposed by Sridhar et al. [16]. This is slightly higher
in the proposed model because of AES decryption, and the reconstruction steps that were
followed for data-transformation matrix retrieval. There is not much difference in the
data retrieval time between these two models. A notable improvement of 16% and 23%
is observed in the average data retrieval time when compared to the two other existing
models of Abbas et al. [10] and Ma et al. [22].

The security strength is measured based on the parameter of difficulty in predicting
the data-transformation matrix from the masked image. The difficulty level is estimated in
terms of a measure called variance of difference (VoD).

Let Xi be a random variable representing the data-transformation matrix value i, X′i
be the estimated result of Xi and difference Di = X′ − X. Let the mean of D be E(Di) and
variance be Var(Di). VOD for column i is Var(Di). VOD is measured for each column, and
the average VOD is given as a privacy measure (pm). A guess is launched every 5 h on the
perturbed data and the privacy measure (pm) is measured at 1-h intervals and plotted in
Figure 7.

pm =
∑N

i=1 VODi

N
(2)

The VoD value is consistently higher even after spending hours breaking the masked
image and obtaining clues about the data-transformation matrix. This is due to the use
of GAN in the proposed solution, which modifies the structural property of the image
to embed the transformation matrix instead of using Least Significant Bit (LSB)-based
methods to hide information.

The embedding capacity is measured against distortion introduced to the cover image
by GAN, and the result is given in Figure 8.



Electronics 2023, 12, 1638 11 of 14

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

observed in the average data retrieval time when compared to the two other existing mod-

els of Abbas et al. [10] and Ma et al. [22]. 

The security strength is measured based on the parameter of difficulty in predicting 

the data-transformation matrix from the masked image. The difficulty level is estimated 

in terms of a measure called variance of difference (VoD). 

Let �� be a random variable representing the data-transformation matrix value i, ��
� 

be the estimated result of �� and difference ��  = �� − �. Let the mean of D be �(��) and 

variance be ���(��). VOD for column i is ���(��). VOD is measured for each column, 

and the average VOD is given as a privacy measure (pm). A guess is launched every 5 h 

on the perturbed data and the privacy measure (pm) is measured at 1-h intervals and 

plo�ed in Figure 7. 

�� =  
∑ ����

�
���

�
 (2)

 

Figure 7. Security strength. 

The VoD value is consistently higher even after spending hours breaking the masked 

image and obtaining clues about the data-transformation matrix. This is due to the use of 

GAN in the proposed solution, which modifies the structural property of the image to 

embed the transformation matrix instead of using Least Significant Bit (LSB)-based meth-

ods to hide information. 

The embedding capacity is measured against distortion introduced to the cover im-

age by GAN, and the result is given in Figure 8. 

3000

3500

4000

4500

5000

5500

6000

6500

1 2 3 4 5

VoD

hour

VoD in Proposed

Figure 7. Security strength.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 8. Embedding capacity vs distortion %. 

As distortion increases, the embedding capacity also increases. However, higher dis-

tortion makes the image become a target for analysis a�acks. The peak signal-to-noise 

ratio is measured between the original cover image and that generated by GAN after em-

bedding. The PSNR is measured for various embedding capacities, and the results are 

given in Figure 9. 

 

Figure 9. PSNR vs capacity. 

The PNSR is consistent and shows a smaller difference even when the embedding 

capacity is increased. This demonstrates the effectiveness of GAN in generating quality 

images that are resilient against analysis a�acks. 

For the same cover image, for different percentages in the key transformation param-

eters, the difference in structural similarity metric (SSIM) between the cover image and 

GAN-generated image is calculated, and the result is shown in Figure 10. 

900

950

1000

1050

1100

1150

1200

0 5 10 15 20

Capacity 
(KB)

Distortion %

45.5

46

46.5

47

47.5

48

48.5

49

49.5

1000 1200 1400 1600 1800 2000

PSNR(db)

capacity (KB)

PSNR

PSNR

Figure 8. Embedding capacity vs distortion %.

As distortion increases, the embedding capacity also increases. However, higher
distortion makes the image become a target for analysis attacks. The peak signal-to-noise
ratio is measured between the original cover image and that generated by GAN after
embedding. The PSNR is measured for various embedding capacities, and the results are
given in Figure 9.
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Figure 9. PSNR vs capacity.

The PNSR is consistent and shows a smaller difference even when the embedding
capacity is increased. This demonstrates the effectiveness of GAN in generating quality
images that are resilient against analysis attacks.

For the same cover image, for different percentages in the key transformation param-
eters, the difference in structural similarity metric (SSIM) between the cover image and
GAN-generated image is calculated, and the result is shown in Figure 10.
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As seen in Figure 10, even when there is a bigger difference in key transformation
parameters, the SSIM difference is low. Hence, it is difficult to know the embedded key
transformation parameters from the SSIM.
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5. Conclusions

A multilevel privacy-protection scheme for defending a data-compromise attack on the
private cloud is proposed in this work. First, data-transformation matrices are encrypted
with AES, then encrypted data-transformation matrices are embedded into a cover image
using GAN. The two levels securing the data-transformation matrices make the proposed
solution robust against data-leakage attacks by insiders. Through performance testing, the
cost of the proposed security scheme is found to be a negligible storage overhead and a 4%
overhead for upload/retrieval, compared to existing works.
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