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• SAR-based shoreline derivation for 
shoreline change analysis and mapping 
shoreline positions 

• Utilisation of DEM provides new insight 
on the degree of agreement for the 
coastal vulnerability index (CVI). 

• Comparing shoreline change methods 
and DEMs to ascertain the degree of 
agreement for the CVI 

• Monitoring the extent of coastal 
vulnerability along the Nigeria’s Niger 
Delta region  
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A B S T R A C T   

It is imperative to assess coastal vulnerability to safeguard coastal areas against extreme events and sea-level rise. 
In the Niger Delta region, coastal vulnerability index assessment in the past focused on open-access parameters 
without comparing the open-access parameters, especially coastal elevation and shoreline change. This sensi
tivity to the shoreline method and open-access coastal elevation limits the information for the planning of coastal 
adaptation. The area under investigation is the Niger Delta, which is distinguished by its low-lying coastal plains 
and substantial ecological and economic significance. In light of the selected parameters, Sentinel-1 GRD images 
from 2015 to 2022 during high tidal conditions were used to delineate the shoreline position and change rate. 
Also, different open-access DEMs were used to derive the coastal elevation using the Geographic Information 
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Shoreline position change 
Digital Elevation Model (DEM) 

System (GIS) approach. The study employs 5 parameters, such as shorelines obtained from Sentinel-1 SAR images 
and several Digital Elevation Models (DEMs), geomorphology, mean sea level rise, significant wave height, and 
mean tide range, in conjunction with the initial Coastal Vulnerability Index (CVI) approach. The study reveals 
that the type of DEM used significantly influences the coastal elevation ranking and, subsequently, the CVI. 
Differences in shoreline change rate estimation methods (EPR and LRR) also impact the vulnerability rankings 
but to a lesser extent. The findings highlight that 40.1% to 58.9% of the Niger Delta coastline is highly or very 
highly vulnerable to sea-level rise, depending on the shoreline change rate or DEM used. The study underscores 
the potential of using CVI methods with open-access data in data-poor countries for identifying vulnerable 
coastal areas that may need protection or adaptation. Lastly, it points out the need for higher resolution DEMs.   

1. Introduction 

The Niger Delta, an economically and ecologically significant region 
in Nigeria, is characterised by extensive environmental challenges and a 
unique juxtaposition of abundant biodiversity. The expansive system 
comprising rivers, estuaries, and wetlands serves as a sanctuary for a 
wide array of species while also providing sustenance for millions via 
fisheries, agriculture, and a huge oil and gas sector for the nation (Okeke 
and Ibe, 2021). The region is becoming more susceptible to the effects of 
both human activity and natural environmental changes, including 
pollution, erosion, and climate-induced fluctuations in sea levels (Eji
keme et al., 2017). Within this context, the monitoring of the coastal 
area arises as a crucial instrument for comprehending and alleviating 
these consequences. Efficient surveillance of the coastal areas of the 
Niger Delta is essential for monitoring the well-being of its ecosystems 
and ensuring the long-term viability of its resources. The process entails 
a systematic study and assessment of variations in the quality of water, 
dynamics of sediment, and diversity of living organisms, which offers 
crucial information for the purpose of environmental management 
(Lemenkova and Debeir, 2023). Furthermore, this monitoring process 
aids in predicting and tackling the negative effects of oil spills, which 
pose a substantial peril to the natural equilibrium of the region (Ade
banjo and Oyebade, 2022). Additionally, coastal monitoring is crucial 
for providing information to make informed policy decisions, directing 
conservation initiatives, and facilitating the establishment of sustainable 
practises that achieve a balance between economic expansion and 
ecological preservation (Sam et al., 2023). 

Coastal vulnerability has many definitions as these are derived from 
different disciplines and can be focused on either physical and natural 
systems or social and economic systems, or both (Bukvic et al., 2020). 

The report from the International Panel for Climate Change (IPCC) 
projected the severe impact of climate change on coastal natural and 
built environments. According to IPCC (IPCC, 2014) considers vulner
ability as an internal property of the system comprising of its sensitivity 
and adaptive capacity (Sharma and Ravindranath, 2019). However, 
vulnerability is still mostly regarded as the susceptibility of the natural 
coastal environment to impacts of erosion or inundation caused by sea 
level rise and/or extreme weather conditions such as storm surges, 
which have severe effects on the infrastructure and livelihoods of coastal 
communities (Anfuso et al., 2021). 

Coastal vulnerability is often assessed using four distinct ways, as 
described by Ramieri et al. (Ramieri et al., 2011). These methods 
include: (i) index-based approaches, (ii) indicator-based approaches, 
(iii) decision support systems based on GIS (Geographical Information 
System), and (iv) dynamic computer models. Index-based approaches 
have been devised to evaluate the susceptibility of coastal areas on a 
regional to national level. They are relatively easy to apply, and their 
results can be displayed in map form, clearly indicating areas of higher 
vulnerability. However, these methods do not contribute to under
standing of processes contributing to vulnerability of the coastline 
(Kantamaneni, 2016). Despite this limitation, index-based methods are 
widely used, particularly in countries where there is a lack of data 
collection at local scales, as is the case in this study. The coastal 
vulnerability index is a one-dimensional unitless measure of coastline 
exposure based on a number of quantitative or semi-quantitative pa
rameters (Ramieri et al., 2011). The original method for calculating the 
coastal vulnerability index (CVI) was developed by Gornitz et al. (Gor
nitz et al., 1991), who used six parameters, namely rate of relative sea 
level rise (mm/year), mean tidal range (m), mean wave height (m), 
geomorphology, shoreline erosion/accretion rates (m/year) and coastal 
slope (per cent). Over the years, other researchers have extended the CVI 
to include additional parameters based on increased data availability. 

Abbreviations 

3D Three-Dimensional 
ALOS Advanced Land Observing Satellite 
ASTER Advanced Spaceborne Thermal Emission and Reflection 

Radiometer 
AW3D ALOS World 3D 
BEST Bare-Earth SRTM Terrian 
CVI Coastal Vulnerability Index 
DEM Digital Elevation Model 
DSAS Digital Shoreline Analysis System 
DTM Digital Terrain Model 
EPR End-Point Rate 
ETOPO2 Earth Topography and Bathymetry 
FCN Fully Convolutional Neural Network 
GDEM Global Digital Elevation Models 
GIS Geographic Information System 
GRD Ground Range Detected 
GTOPO30 Global 30 Arc-Second Elevation 

ICE-Sat Ice, Cloud, and land Elevation Satellite 
ICZM Integrated Coastal Zone Management 
IPCC International Panel for Climate Change 
LandSat Earth-imaging satellite 
LiNAR Light Detection and Ranging 
LRR Linear Regression Rate 
MERIT Multi-Error-Removed Improved-Terrain 
MSL Mean Sea Level 
MWH Mean Wave Height 
NASA National Aeronautics and Space Administration 
PSMSL Permanent Service for Mean Sea Level 
RMSE Root Mean Square Error 
SAR Synthetic Aperture Radar 
S.D Standard Deviation 
SLR Sea Level Rise 
SRTM Shuttle Radar Topography Mission 
TanDEM-X TerraSAR-X add-on for Digital Elevation Measurements 
USGS United States Geological Survey 
U.S.A. United States of America  
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Since its introduction, the CVI has been used to assess coastal vulnera
bility in many countries including the USA (Thieler and Hammar-Klose, 
2000), Bangladesh (Jana, 2020), India (Sheik Mujabar and Chan
drasekar, 2013; Joevivek et al., 2013; Sankari et al., 2015), Malaysia 
(Mohd et al., 2019), Spain (Mohd et al., 2019), Ivory Coast (Tano et al., 
2016), Australia (Abuodha and Woodroffe, 2010), and Canada (Cogs
well et al., 2018). 

Digital elevation models (DEMs) and rates of coastal erosion and 
accretion are crucial parameters when assessing coastal vulnerability, 
which informs planning for the potential impact of sea level rise and 
extreme storminess (e.g. McLaughlin and Cooper (Mclaughlin et al., 
2010)) by coastal managers and policy makers. Not many countries, 
particularly those in developing world, have systematic means of col
lecting these data. Instead, they rely on freely available data, often 
derived from satellite images. The quality and resolution of DEMs and 
shoreline change data as well as methodologies used to extract these 
data from satellite images have improved exponentially in recent de
cades (Hamid et al., 2021). However, there are still limitations in ac
curacy and precision of these data and in particular those that are 
publicly available and used to assess coastal vulnerability at different 
spatial and temporal scales. Therefore, it is necessary to investigate the 
sensitivity of coastal vulnerability indices to different shoreline posi
tional data and coastal elevation parameters derived from different 
DEM. 

Many of the recent studies utilised freely available satellite images 
and information derived from these images to calculate CVI. The 
shoreline change rate, which is one of the major parameters when 
assessing the impact of sea level rise on the coastline, can be estimated 
from shorelines extracted from freely available optical satellite images 
such as Landsat and Sentinel-2 (Vos et al., 2019). Earlier, this thesis 
demonstrated that reliable shoreline data could also be extracted from 
Sentinel-1 SAR images, which is beneficial for regions with persistent 
cloud cover. Increased spatial resolution and repeat coverage by satel
lites allows shorelines in the same areas to be compared at various time 
intervals, from days, seasons to years. Over the years, a number of ap
proaches have been developed for calculating shoreline change rates 
from remote sensing data. Two of the most common approaches are the 
end-point rate (EPR) and the linear regression rate (LRR) (Mani Murali 
et al., 2013; Paul and Sumam, 2013; Sankari et al., 2015; Akshaya and 
Hegde, 2017; Tahri et al., 2017). Each of these approaches has its ad
vantages and disadvantages. The EPR is simple to compute and only 
requires two shorelines, however, the cyclical nature of erosion and 
accretion may be missed (Dolan et al., 1991; Crowell et al., 1997; 
Himmelstoss et al., 2018). The LRR approach uses all data, regardless of 
change or accuracy, is based on well-established statistical principles 
and is simple to implement (Dolan et al., 1991; Crowell et al., 1997; 
Himmelstoss et al., 2018). However, unlike EPR, this approach is prone 
to the effects of outliers and usually underestimates the rate of change 
(Dolan et al., 1991; Genz et al., 2007). 

When determining the effect of rising sea levels coastal area, it is 
important to also include the coastal slope and/or elevation, along with 
the coastal morphology (Nageswara Rao et al., 2009). Both of these 
parameters can be derived from Digital Elevation Models (DEMs) and 
their availability and accuracy are important for assessment of coastal 
vulnerability. Since the release of the Global DEM from the Shuttle 
Radar Topography Mission (SRTM) by the National Aeronautics and 
Space Administration (NASA) (Hamid et al., 2019), the SRTM DEM has 
been widely used to generate coastal elevation parameters for CVI 
analysis. However, numerous studies have revealed that SRTM DEM 
contains considerable errors with a strong bias (Tighe and Chamberlain, 
2009; Becek, 2014) owing to vegetation (Lalonde et al., 2010; Short
ridge and Messina, 2011) and man-made features (Gamba et al., 2012). 
As a result of these errors, areas susceptible to coastal inundation can be 
underestimated by up to 60%, depending on assumptions about sea level 
rise (Kulp and Strauss, 2016). Many efforts have been made to reduce 
the vertical errors in this DEM using different techniques. For example, 

O’Loughlin et al. (O’Loughlin et al., 2016) developed the ‘Bare-Earth’ 
(BEST) SRTM DEM by combining multiple remote sensing datasets, (e. 
g., NASA’s ICE-Sat laser altimeter, tree cover percentages from the 
MODIS satellite and global vegetation height map) to remove vegetation 
artefacts from within the original SRTM-DEM. The new DEM reduced 
the bias in vegetated areas by >10m in comparison to the original DEM. 
The Root Mean Square Error (RMSE) was also reduced globally from 14 
m to 6 m. Yamazaki et al. (Yamazaki et al., 2017) developed the Multi- 
Error-Removed Improved-Terrain (MERIT) DEM by removing several 
error components (e.g., speckle noise, stripe noise, absolute bias, and 
tree height bias) from the DEMs obtained by SRTM, AW3D, and View
finder Panoramas. The resulting land areas were mapped to a vertical 
accuracy of 2 m or greater. Kulp and Strauss (Kulp and Strauss, 2018) 
introduced CoastalDEM which is derived using 23-dimensional vertical 
error regression analysis incorporating vegetation cover indices and 
other variables (such as local elevation points, population density, 
elevation slope, and local SRTM derivation from ICE-Sat), as well as 
LiDAR and ground truth data, using a multilayer perceptron artificial 
neural network. They reduced the vertical bias in the DEM from 3.67m 
to <0.01 m across the US coast and 2.49m to 0.11m along the Australian 
coast, reducing RSME from 5.36 to 2.39m and 4.15 to 2.45m, respec
tively. Aside from the SRTM, the Japan Aerospace Exploration Agency 
has created other GDEMs from SAR images, such as Advanced Land 
Observing Satellite (ALOS) World 3D (AW3D) (Tadono et al., 2015), 
ETOPO2, and GTOPO30. In addition to these open-access DEMs, there 
are a number of commercially available DEMs, with higher spatial res
olution and with lower bias (e.g., ALOS World 3D at 5 m resolution, a 
TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) at 
12 m resolution). Recently, Meadows and Wilson (Meadows and Wilson, 
2021) used machine learning to assess the vertical accuracy of open- 
access DEM in assessing flooding. The study applied a fully convolu
tional neural network (FCN) to predict the bias. A potential model was 
trained using high-resolution DEM (LiDAR) as reference data against 
open access (i.e., SRTM, ASTER, and AW3D30). The study found that the 
FCN outperforms the other models by reducing the root mean square 
error in the testing dataset by 71%. The study found to improve with 
increasing model complexity, with the simplest model which is the 
Random Forest (RF) reducing test RMSE by 55%, the more complex DCN 
outperforming that (60%), and the most complex model (FCN) going 
even further (71%). This may be because it can learn from spatial pat
terns at multiple scales, unlike other models, which learn pixel-by-pixel 
with only basic spatial context (such as slope values). 

Until now, the absence of reliable open-access Global Digital Eleva
tion Models (GDEM) has hindered assessment of coastal vulnerability in 
data poor regions (Kulp and Strauss, 2016; Kulp and Strauss, 2018). This 
is the case with Niger Delta where only few studies have focused on 
assessing coastal vulnerability. For example, Oyegun et al. (Oyegun 
et al., 2016) used the CVI to assess the vulnerability of coastal com
munities in the Niger Delta, while Musa et al. (Musa et al., 2014) com
bined the original CVI (Gornitz et al., (Gornitz et al., 1991)) and another 
CVI model (Dinh et al. (Dinh et al., 2012)) to assess the vulnerability of 
the region to river flooding whilst accounting for sea level rise. Recently, 
Oloyede et al. (Oloyede et al., 2022) quantified and classified the coastal 
vulnerability along the entire Nigerian coastline using an Analytical 
Hierarchical Approach. Based on the outcomes derived from both 
methodologies, it can be concluded that 59–65% of the complete 
Nigerian coastline is characterised by a moderate to high vulnerability 
to sea-level rise. With increasing availability of freely available higher- 
resolution data such as shorelines derived from Sentinel-1 SAR imag
ery and coastal elevation parameters derived from DEMs, it becomes 
possible to assess coastal vulnerability in data poor areas such as Niger 
Delta. It gives also opportunity to assess the sensitivity of the CVI to 
DEMs of different spatial resolution and vertical accuracies achieved by 
using different correction techniques. 

Therefore, the aim of this study is to assess the effects of shoreline 
change rates and coastal elevation parameters on estimates of coastal 
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vulnerability to sea level rise in Niger Delta region. The focus of this 
study is on geophysical coastal vulnerability. The original Coastal 
Vulnerability Index method (Gornitz et al., (Gornitz et al., 1991)) will be 
used with open-access data including shorelines derived from Sentinel-1 
SAR based on Dike et al. (Dike et al., 2023) (Dike, 2022) and coastal 
elevation parameters derived from freely available DEMs including 
ALOS Global Digital Surface Model (AW3D), Multi-Error-Removed 
Improved-Terrain (MERIT)-DEM, Bare-Earth SRTM (BEST)-DEM, and 
the commercially available WorldDEM- Digital Terrain Model (DTM). 
The focus will be on comparison of the elevation and the shoreline 
change rate rankings, which are incorporated in calculations of coastal 
vulnerability. Specific objectives are to (a) compare the shoreline 
change rate ranking using EPR and LRR methods (b) compare the 
elevation rankings from different open-access DEMs (c) to compare CVI 
estimates obtained using different combinations of DEMs and shoreline 
change rates and to assess spatial variation in these estimates. 

2. Materials and methods 

2.1. Study area 

The Niger Delta region has been described as a dynamic coastal one 
that is sensitive to changes brought about by humans as well as those 
brought about by nature (Daramola et al., 2022; Babatunde, 2008). In 
other words, it is susceptible to both anthropogenic and natural changes. 
Due to its location in the Atlantic Ocean, the climate there is influenced 
both by interactions between land and sea and by seasonal trends. The 
stretch of shoreline across the Gulf of Guinea that is the focus of this 
study is approximately 130 km long. The location does not have any 
seawalls or embankments protecting it and has an average elevation that 
is only two to five metres above sea level. As low-lying coastal plains, 
deltas are particularly susceptible to the effects of increasing sea levels 
because of their topography. They are also vulnerable to the climatic 
influences that are caused by rivers further upstream and those that 
originate directly from the inner deltas. They are also impacted by 
human activities such as alterations to land use, the construction of 
dams, mining, irrigation, the extraction of subterranean resources, as 
well as urbanisation (Nicholls et al., 2007). Recent studies that have also 
considered the Niger Delta region towards understanding the coastal 
behaviour reflect gaps in present knowledge, as this region is data- 
deficient (Porzycka-Strzelczyk et al., 2022; Ochege et al., 2017). 

The study area is home to Nigeria’s oil and gas extraction operations 
and supporting infrastructure. According to DPR (DPR, 2018) and NNLG 
(NNLG, 2020), the value of these assets is estimated to be approximately 
17.5 billion dollars. The region is rich in natural resources and hosts 
several densely populated cities like Port Harcourt, Bonny, and Ibo, in 
addition to oil and gas exploitation and infrastructure, which are the 
primary economic drivers of Nigeria. As a result, an assessment of the 
nation’s susceptibility to rising sea levels is of the utmost significance for 
the nation. 

This study will be focused on the eastern portion of the Niger Delta, 
which stretches 130 km lengthwise from Bonny River to Cross river. This 
region is home to a number of important oil terminals and LNG facilities. 
The study area covers two states (Rivers and Akwa-Ibom) with a pro
jected population of 12,483,101 people as of 2016, of which 885,600 
people live in five Local Government Areas (Bonny, Andoni, Opobo/ 
Nkoro, Eastern Obolo and Ibeno) along the coastline (Dike et al., 2023; 
Ochege et al., 2017). Taking into account the geomorphology, the re
gion’s geomorphologic attributes include mudflats, sandy beaches, and 
dunes (Sexton and Murday, 1994). These features make up the region’s 
distinctive landscape, and the land use comprise of mangroves, forest, 
urban areas and beaches (Dike et al., 2023; Ochege et al., 2017). Pre
cisely, the Niger Delta region lies within the southern portion of Nigeria, 
and one of the highest oil-producing regions of West Africa, as it is also 
near the Atlantic Ocean as well as the Gulf of Guinea. The present 
investigation bounds around the 12.2 km coastline that is located on 

Bonny Island in the Niger Delta region of Nigeria (see Fig. 1). 

2.2. Methods 

The present study employed the original model proposed by Gornitz 
et al. (Gornitz et al., 1991) to assess the coastal vulnerability index 
(CVI). The CVI was calculated along transects spaced at 50m distance 
along the shore. All parameters were kept constant except the rate of 
shoreline change and coastal elevation. Two different rates of shoreline 
change were used in conjunction with four different open-access DEMs. 
The estimated CVI used different combinations of these inputs in order 
to test the sensitivity of results to these inputs. In addition, comparison 
was made between results obtained using open-access DEMs and higher 
resolution commercially available DEM for a restricted area around 
Bonny Island (western part of the study area). The methodology that was 
employed for this study is represented in Fig. 2. 

2.3. Coastal Vulnerability Index computation 

The present study uses the original CVI proposed by Gorntiz et al. 
(Sheik Mujabar and Chandrasekar, 2013) which is based on six param
eters. The first step is to determine the ranking for each of the param
eters. The coastal vulnerability index is computed after each of the 
parameters for the coastline has been given a rank based on particular 
data for that characteristic or parameter. This coastal vulnerability index 
is determined by taking the square root of the product of the rated pa
rameters and dividing that result by the total number of parameters. 
Alternatively, it can be determined by obtaining the geometric mean and 
then take its square root. As can be seen in the following formula, the 
expression for computing CVI is as follows: 

CVI1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α1*α2*α3*…….αn

n

√

(1)  

where α1 denotes the Coastal elevation (m), α2 denotes the Global Sea 
level rise rate (GSLR) (mm/yr), α3 denotes geomorphology, α4 denotes 
the shoreline changes rate (m/yr), α5 denotes the mean significant wave 
height (m), and α6 denotes the mean tidal range (m). 

The CVI is computed for every location, in this instance, within an 
interval of 50m along the 130km shoreline length. After then, several 
fundamental parameters were computed for the entire length of the 
coastline. These statistics include the mean, the standard deviation, as 
well as the 25th percentile, 50th percentile (or the median), and 75th 
percentile. According to the classifications proposed by Thieler and 
Hammar Klose (Kulp and Strauss, 2018) as well as the quartile values, 
every location has been assigned into a category among these four, 
which are expressed using the percentile ranges: 75–100% (very high 
vulnerability), 50–75% (high vulnerability), 25–50% (moderate 
vulnerability), as well as 0–25% (low vulnerability). 

2.4. Parameters for coastal vulnerability 

The parameters that determine CVI’s performance differ based on 
scale, data type, and data availability. However, there are six sub- 
categories that are used to express the parameters of geologic and 
physical processes. These are as follows: mean tidal range, mean wave 
height, relative sea level rise, geomorphology, rate of shoreline change, 
and coastal elevation. Table 1 summarises all the parameters that were 
utilised, including the spatial resolutions for the data that were avail
able, its format, the time frame, and the sources of the data. 

The weights that are assigned to each variable are given a rank that is 
scaled from 5 to 1. This scale ranges from one extent to the other extent 
to reflect the severity of the vulnerability. As can be seen in Table 2, the 
value of 5.0 denotes a vulnerability class that is considered to be 
extremely severe, while the value of 1.0 denotes a vulnerability class 
that is considered to be low. The ranking that Gornitz et al. (Gornitz 
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et al., 1991) came up with was used in this investigation because it was 
able to give a common scale that enabled direct comparison on the 
ranking for each parameter that were produced from various datasets. 

It is noteworthy to state that some considerations are made for each 
test. The coastline elevation parameters and the shoreline change rate 
are the two primary sets of parameters that are used in each test. For 

Fig. 1. Map showing (a) Africa (b) Nigeria and (c) Niger Delta Region (d) Study Site.  

Fig. 2. Flow diagram for assessment of CVI.  
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each test, these parameters are used. They are generated through the use 
of various methodologies as well as datasets. The tests are performed 
with all other variables held constant. 

2.5. Parameters and descriptions 

2.5.1. Shoreline change rate 
The shoreline rates were calculated from shorelines between 2015 

and 2020, derived from Sentinel1 images using methods described in 
recent literature (Dike et al., 2023). When calculating shoreline change 
rates, two distinct approaches are utilised: the linear regression rate 
(LRR) and the end-point rate (EPR). The rates are computed based on the 
intersections of coastal transects and intercepts that are spaced every 50 
m along the coast. The EPR technique determines the rate of shoreline 
change by dividing the distance that separates the most recent shoreline 
from the oldest shoreline by the amount of time that has passed since the 
most recent shoreline was formed (Mirdan et al., 2023). The LRR 
method determines the rate of shoreline change by taking into account 
all of the shorelines that are currently available. The shoreline change is 
computed by fitting a regression line with least-squares to all shoreline 
positions across an established transect (Gibbs et al., 2019). The 
regression line is calculated by squaring the distance of each shoreline 
data point from the regression line and adding the squared residuals 
(Himmelstoss et al., 2018.). Depending on the time period under 
investigation (seasonal, annual, decadal), estimates from these two 
methods can vary significantly (Dwarakish et al., 2009). 

The calculations for the rates were achieved using statistical tools 
with the use of a software application called Digital Shoreline Analysis 
System (DSAS), which is an extension for the ArcGIS software and was 
produced by the United States Geological Survey (USGS). This is 
corroborated with a CVI study conducted in the USA (Thieler and 
Hammar-Klose, 2000). The DSAS is an advanced and reliable statistical 
system that measures the rates of change from historic coastline posi
tions utilising a variety of statistical techniques. DSAS has both robust 
and automated features for computing statistical rates (Mani Murali 
et al., 2013; Himmelstoss et al., 2018). In addition to being available for 
free, the DSAS tool has undergone extensive validation in a variety of 
environments across the United States and globally. In the current 
investigation, vector-based coastline locations from 2015 to 2020 ac
quired from Sentinel-1 GRD SAR satellite data were analysed in two 
distinct ways to determine shoreline change rates. These methods were 
referred to as EPR and LRR. The erosion and accretion susceptibilities of 
these shoreline change parameters were ranked. Based on the CVI 
assessment ranking, when compared to another coastline, one that has 
negative shoreline change rates (also known as high erosion rates) is 
considered to be in a more precarious position than one that has positive 
shoreline change rates (also known as high accretion rates). In other 
words, the coastline that has a positive shoreline change rate is 
considered to be less vulnerable than a coastline that has a negative 
shoreline change rate. According to Yin et al. (Yin et al., 2012), a higher 
negative shoreline change rate indicates a region that is at high risk. 
Table 2 provides the ranking and classification information. 

Table 1 
Parameters utilised on this research.  

Parameter Spatial 
resolutions 
(m) 

Data 
format 

Source of data Date of data 
acquisition 

Coastal elevation     
(i) SRTM 30.0 GeoTiff SRTM (USGS, 

2021); USGS ( 
USGS, 2021); 
Earth Explorer 

2000 

(ii) AW3D 30.0 GeoTiff Jaxa (Jaxa, 2003;  
Jaxa, 2021). 

2015 

(iii) MERIT 90.0 GeoTiff Yamazaki et al. ( 
Yamazaki et al., 
2017); Yamazaki ( 
Yamazaki, 2018); 
University of 
Tokyo’s MERIT 
DEM; 

2000, 2015 

(iv) BEST 90.0 GeoTiff Amatulli et al. ( 
Amatulli et al., 
2020); Jarvis et al. 
(Jarvis et al., 
2008); University 
of Bristol’s Bare- 
Earth SRTM ( 
Bare-Earth SRTM, 
2015; SRTM, 
2018) 

2000, 2003, 
2009, 2011 

(v) WorldDEM- 
DTM 

12.0 GeoTiff AirBus (AirBus, 
2023) 

2014 

Shoreline change 
Rate (m/yr)  

Vector Sentinel-1 GRD 
SAR-Derived 
imagery (Dike 
et al., 2023;  
Sentinel-1 Data, n. 
d.) 

2015, 2016, 
2017, 2018, 
2019, 2020 

Mean tidal range 
(m) 

Not 
applicable  

Reports on Pilot 
Study (Usoro, 
2010)  

Significant wave 
height (m) 

Not 
applicable  

Reports on Pilot 
Study ( 
Nwaokocha et al., 
2015)  

Relative sea- 
level rise 

Not 
applicable  

IPCC Reports ( 
IPCC, 2019; IPCC, 
2022)  

Geomorphology Not 
applicable  

Reports on Pilot 
Study (Sexton and 
Murday, 1994)   

Table 2 
Coastal vulnerability index showing rankings of the parameters.  

Parameters Ranking parameter for CVI 

Very high High Moderate Low Very low 

5.0 4.0 3.0 2.0 1.0 

Coastal elevations (m) <5.00 5.10–10.0 10.10–20.0 20.10–30.00 >30.0 
Shoreline changes (m/yr) ≤ − 2.00 − 1.10 to − 2.00 1.00 to +1.00 1.00 to 2.00 >2.10 
Sea level rise (SLR) rate 

(mm/yr) 
>3.16 2.95–3.16 2.50–2.95 1.80–2.50 <1.80 

Average tidal ranges (m) <1.00 1.00–1.90 2.00–4.00 4.10–6.00 > 6.00 
Average wave heights 

(m) 
> 1.25 1.05–1.25 0.85–1.05 0.55–0.85 <0.55 

Geomorphological 
features 

Barrier beach, coral reefs, mangrove, deltas, sand 
beach, salt marsh, mudflats, coral reefs mangrove, 

Cobble beaches, 
lagoons, estuaries, 

Lower cliffs, alluvial 
plains, glacial drift, 

Mid-level cliffs, 
indented coasts, 

Fiords, rocky 
cliff coasts, 

(Source: (Gornitz et al., 1991)). 
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2.5.2. Coastal elevations 
Coastal elevation is a significant factor since the sensitivity towards 

sea level rise shows vulnerability to storm surge. Coastal elevation is one 
of the parameters for episodic coastal flooding. Studies have also found 
that regarding coastal elevations, episodic coastal flooding decrease at 
higher elevation (Gornitz et al., 1991). Coastal flooding can be caused by 
both rising sea levels and storm surges. In this study, the coastal 
elevation is derived from on-land elevation since the available open 
commercial-access DEM raster grid does not cover nearshore elevation. 
In order to match the coastal elevation, the study utilised a spatial 
interpolation approach based on the delineated shoreline position from 
SAR imageries using the GIS application. On the other hand, the transect 
line was used as the interpolation guide to aid in the extraction of the 
coastal elevation. According to the CVI evaluation ranking, coastal lo
cations that have low-lying elevations are considered to be very 
vulnerable, whereas coastal areas that have higher elevations are 
considered to be less vulnerable (Gornitz et al., 1991). Additionally, 
vulnerability decreases with distance from the coast. Suitable vulnera
bility assessment would require high resolution elevation models (e.g., 
1m–5m) with adequate vertical accuracy. For the purposes of this 
investigation, coastal elevation characteristics were obtained from open- 
access and commercial sources. For instance, SRTM, AW3D, Bare-Earth 
DEM (BEST), and Merit-DEM are open-access DEMs that will be utilised 
in the study, while WorldDEM is the commercial DEM. 

2.5.3. Other parameters 

2.5.3.1. Geomorphology. The geomorphology and geology are associ
ated with coastal response to natural drivers of change. According to 
Gornitz and Kanciruk (Gornitz and Kanciruk, 1989), coastal resistance to 
erosion is dependent of bedrock lithology, coastal landforms, and shore 
material. In this study, only geomorphology is considered and is 
described as being deltaic, with sandy beaches and estuarine landforms 
(Sexton and Murday, 1994). These landforms are classed as “very high” 
in terms of their susceptibility considering they are extremely suscep
tible to spread out as wave erosion. More information on this can be seen 
on see Table 2. 

2.5.3.2. Relative sea level changes. The understanding of the influence of 
relative sea level change in coastal management is also important in this 
study. Even though the Permanent Service for Mean Sea Level (PSMSL) 
compiles annual mean sea level (MSL) as well as monthly mean sea level 
(MSL) readings via a network of tidal gauges that is global, there is lack 
of data availability on PSMSL for the research region. Rather, the rate of 
sea level rise was determined by taking into account a report produced 
by the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2021), 
which stated that the rate of change in sea level for the region was 
3.2–4.2mm per year for data covering 2006 to 2018. This was used to 
make the decision. This rise in sea level is considered to be of a very high 
severity when compared to the degree to which the region is at risk or 
vulnerable. 

2.5.3.3. Mean wave height. The wave energy is the most responsible for 
shoreline changes. The mean wave height (MWH) parameter is utilised 
so that exposure to wave energy can be taken into consideration. Pri
marily, wave height data are derived from wave-rider buoy observations 
(Mounet et al., 2023). Meanwhile, some studies have leveraged the 
development of several models for determining mean wave height on a 
global scale. However, it is difficult to acquire globally accurate and 
exhaustive validation data for wave energy models. This is due to the 
limited availability of observational data for different regions, which can 
hinder the validation process, making it difficult to assess the model’s 
accuracy across diverse geographic locations (Laignel et al., 2023). 
Thus, this study will be based on previous literature on mean wave 
height in the Niger Delta region. Studies have found that the mean wave 

height within the Niger Delta region varies from 1.80 to 2.40 m between 
Bonny and Cross River (Nwaokocha et al., 2015). Also, this range be
longs to the highly vulnerable category. 

2.5.3.4. Mean tidal ranges. Tidal range is a vital variable which is linked 
to the two flood types, namely the episodic coastal flooding and the 
permanent coastal flooding. Shaw et al. (Shaw et al., 1998) as well as 
Gornitz et al. (Gornitz et al., 1991) considered a coastal region that has a 
high tidal range and one that is characterised to be extremely vulner
able. In contrast, Thieler and Hammar-Klose (Thieler and Hammar- 
Klose, 2000) considered macro-tide areas that are less vulnerable than 
micro-tidal areas due to the fact that storm surges occur at high tidal 
levels. This is because macrotidal areas are further away from the coast. 
In spite of this, the classification developed by Gornitz et al. (Gornitz 
et al., 1991) will be applied here. According to Usoro (Usoro, 2010), the 
mean spring tide range between Bonny River and Cross River ranges 
from 1.9 m to 3 m. This information was used to determine the tidal 
range for the region under investigation. The vulnerability associated 
with this tide range is rated as moderate. Further information can be 
seen on Table 2. 

2.6. Comprehensive detail on tests 

Table 3 provides a summary of various assessments for Shoreline 
Change Rate and DEM combinations utilised on the investigation. 

3. Results 

In this section, the results for the shoreline change rate and coastal 
elevations rankings are firstly compared. Following this, an examination 
of the sensitivity of CVIs to various coastal elevation (DEM) inputs and 
shoreline change methods is conducted. 

3.1. Rankings for the shoreline change rates 

Fig. 3 and Table 4 illustrate rankings for the shoreline change rates 
for a 130-kilometre stretch of the Niger Delta coast using LRR and EPR 
statistical approaches. In general, most of the rankings are within a 
similar range, and there is a general agreement along the coast (see 
Fig. 3). About half of the coastline is described to be highly vulnerable 
(for LRR) and slightly more than half (for EPR). Conversely, almost one 
third of this coastline can be described as having a very low vulnerability 
level. When the two methods are compared, the fraction of the total 
shoreline length that is ranked and classified to the groups of low, 
moderate, and high susceptibility has <1.5% as the percentage point 
difference between them. The difference between the percentage of total 
shoreline length that is listed as very high vulnerability and the per
centage that is ranked as very low vulnerability has grown, but it re
mains as lesser than 5% (6.5 km). The findings indicate that although 
there are some changes in the rankings of shoreline change rate based on 
the various methods used, these variations have a small impact on the 
rankings despite the fact that there are some disparities in the rankings. 

3.2. Ranking of coastal elevation 

The spatial distributions regarding the coastal elevation rankings 
along a study region is depicted in Fig. 3, while the statistical distribu
tion regarding the coastal elevation rankings along a study region is 

Table 3 
Comprehensive detail on the tests for this research.  

DEMs/shoreline change rate WorldDEM AW3D MERIT BEST SRTM 

EPR + + – + – + – + – 
LRR + + – + – + – + – 

Note: + Bonny coastline, – Niger delta coastline. 
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depicted in Fig. 4. These rankings were produced from the various DEMs 
used in the analysis. As can be seen in these figures, the spatial distri
butions regarding the coastal elevation ranking changes across the coast 
but also depends on the DEM used. 

The spatial distributions on the coastal elevation rankings obtained 
by using the MERIT DEM are depicted in Fig. 4, and the results suggest 
that the whole coastline of 130km is either considered to be extremely 
vulnerable or very highly vulnerable. When the BEST, AW3D, and SRTM 
datasets are taken into account, certain parts of Bonny, the Cross River 
mouth as well as the Ibo River, are all classified as having a high risk of 
vulnerability. The moderate-level coastal elevation rankings that were 
produced for MERIT share a certain resemblance with those that were 
derived from other products, notably throughout the central and eastern 
regions of the coastline. However, there are considerable variances be
tween products, so these rankings should not be used interchangeably. 
When the BEST DEM is used, the differences become readily apparent, 
specifically in certain areas of Bonny as well as the direction of Cross 
River. When compared to the rankings that are obtained by using other 
DEMs, the usage of the AW3D DEM results in more parts of the coastline 
being classified as belonging to the low vulnerability class. This is the 
case in the middle section of the coastline. 

When employing a variety of DEMs, the fraction of total shoreline 
that is given to each class is broken down and summarised in Fig. 5. 
When DEMs with a resolution of 30m are used (STRM and AW3D), the 

most extensive area of the coastline is categorised as having a high risk 
of erosion. Despite the fact that an agreement has been reached, there 
are still proportional variations between the rankings of each coastline. 
When DEMs with a resolution of 90m were used, the extremely high 
vulnerability category was allocated to the majority of the shoreline for 
MERIT, while the moderately susceptible class was assigned to the 
majority of the shoreline for BEST. In terms of the percentage of 
shoreline that fell within each category, BEST and SRTM were the most 
comparable to one another. In light of this, it appears that the vertical 
accuracy of the DEMs or the post-processing of bias of the DEMs plays an 
essential influence in the resulting rankings. This is in addition to the 
DEMs’ high spatial resolution. In general, when comparing MERIT and 
BEST ranks, the bulk of ranking variances are equivalent to one cate
gory, although a small fraction of the coastline (3.9% of it) has a dif
ference of two rankings. This is because the MERIT rankings are based 
on scientific evidence rather than subjective opinions. There is a high 
possibility that the CVI assessment result will be greatly impacted by the 
unpredictability in the coastline elevation ranking. 

3.3. The rankings for the coastal elevations along the Bonny coast 

Fig. 6 provides a concise overview of the percentage of a stretch of 
12.2km of Bonny Island’s coastline that correlates to various coastal 
elevation rankings. In this investigation, the elevation rankings that 
were gained from publicly available products such as SRTM, AW3D, 
BEST, as well as MERIT are contrasted with the rankings that were 
derived through data having high resolutions. It was collected from 
WorldDEM, which is a private company that commercialises data. It is 
interesting to note that 7.7% of the coastline was observed to be in this 
class when AW3D is used. When BEST is used, only 7.1% of the coastline 
was observed to be in this class, but when MERIT is used, it is higher at 
26.4% of the coastline that was observed to be in this class, while 21.9% 
of the coastline was observed to be in this class when SRTM is used. 
When the WorldDEM was used, the entire coastline is categorised as 

Fig. 3. Using EPR and LRR data for the ranking of the rates of shoreline change along the coast of the Niger Delta.  

Table 4 
The Shorelines change rankings utilised on the Niger Delta region.  

Ranking Very 
low 

Low Moderate High Very 
high 

Total length 
(km) 

LRR  39.7  10.4  22.7  7.7  50.0  130.5 
%  30.4  8.0  17.4  5.9  38.3  100.0 
EPR  33.5  8.6  24.6  7.9  55.9  130.5 
%  25.6  6.6  18.9  6.1  42.8  100.0  
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highly vulnerable coastline, or very high. The combination of BEST and 
AW3D is sufficient to assign a low-risk status to any given length of 
coastline. There is a discrepancy in the ranks for 73.2% of the coastline 
between MERIT and WorldDEM, with MERIT having a higher score for 
the very high vulnerability group. However, WorldDEM terrain models 
have distinct rankings, with differences of 27.5% (AW3D), 39% (SRTM), 
and 52.5% (BEST) respectively. In addition, among the observations are 
the differences found on these two rankings between BEST as well as 
AW3D (which is responsible for 7.78% of the coastline). The differences 
among DEMs are mostly found in one ranking compared to MERIT and 
BEST, although for a tiny portion of the coast, they can be observed in 
both rankings at the same time. This could be the effect of the spatial 
resolution and the way that these models deal with elevation error. 

3.4. The CVI estimations 

The CVI metrics that have been estimated are presented in Table 5, 
and they are based on a variety of shoreline change rates and coastal 
elevations. It is evident from the tabulated data that the criterion for 
each of the estimated CVIs differ, most noticeably in the 75th, the 50th 
(or median), as well as the 25th percentiles. In addition, the difference 
determined depends upon the DEMs as well as the shoreline change rates 
which are the variables that are used. When paired with LRR, the DEM 
products all yield results that are equivalent to one another, except for 
the AW3D in its 25th percentile. Table 5 presents CVI criterion estimated 
based on various shoreline change rates and coastal elevations. From the 
table, it is evident that the criterion for each of the calculated CVIs vary, 
particularly in the 25th, 50th, and 75th percentiles, and that the dif
ference is dependent on the selected shoreline change rate and DEM. 

With the exception of AW3D at the 25th percentile, all DEM products 
produce comparable results when combined with LRR. Table 5 also 
displays the average value for the entire CVI percentile values to ensure 
uniformity in the exposure classification. In most contexts, percentile 
greater than 75th is one that is above-normal percentile or simply 
defined as the percentile that is more than 75th. It is considered normal 
to have a percentile that falls between 25th and 75th. Below normal is 
defined as having a percentile that is less than 25th. Also, the 50th 
percentile is also same thing as the median value, as seen in Table 5. 
Average CVI values are used to categorize vulnerability levels, with 
values below 16.3 representing low vulnerability, between 16.4 and 
25.0 representing moderate vulnerability, between 25 and 32.1 repre
senting high vulnerability, and above 32.1 representing very high 
vulnerability. 

3.5. Vulnerability map for the Niger Delta coast 

Fig. 7 shows the vulnerability map along the Niger Delta Coast using 
CVI classification. It indicates that, for various combinations of EPR and 
LRR shoreline change rates and DEM products, the percentage of 
shoreline length in various vulnerability classes. According to the find
ings, which depends upon the shoreline change rates and DEMs, be
tween 40.1% and 58.9% of the coastline is classified as high or very high 
vulnerability, 15.5–30.0% as moderate vulnerability, whilst 20.5–30.7% 
as low vulnerability. The proportion of vulnerable coastline grew when 
the EPR method was used for calculating the shoreline change rate 
instead of the LRR method, while the proportion of least vulnerable 
coastline reduced. When using the shoreline change rates which are 
derived from EPR, about 5%–6% of the coastline was elevated to higher 

Fig. 4. Mapped rundown of the Niger Delta coast ranking regarding coastal elevation.  
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Fig. 5. Plotted rundown of the Niger Delta coast ranking in terms of the coastal elevation.  

Fig. 6. Plotted rundown of the Bonny coast ranking in terms of the coastal elevation.  
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vulnerability category. In contrast, when different DEMs are utilised, the 
percentage variations between vulnerability classes are higher. The re
sults for BEST DEM as well as MERIT DEM found the largest difference 
(12%). In spite of this, differences remain within a single class, as they 
do for the ranking of the elevation parameter. 

3.6. Categorizing vulnerabilities for the Bonny coastline 

Fig. 7 illustrates the proportional length of the shoreline in various 
vulnerability categories. It was determined by utilising various DEMs as 
well as shoreline change rates (LRR and EPR). This information was 
derived from the analysis of the Bonny coastline. The results reveal that 
the shoreline change rates have a far lesser from the effect on the 
computed CVI compared to the coastal elevation which had a far greater 
effect on the computed CVI than the shoreline change rates, which was 
the situation whilst this entire shoreline was under study. The biggest 
percentages for this coastline were recorded when the coastal elevation 
was derived via WorldDEM. It was determined to be 60.2% for EPR 
while the LRR was found to be 56.4%. In addition to this, it was given the 
classification of being very highly vulnerable or highly vulnerable. 
Given that a vulnerability ranking based solely on elevation would 
classify this entire stretch of coastline as highly to very highly vulner
able, the combination of parameters decreased the proportion of the 
coastline in this category. 

The distinctions between classes are not particularly significant. In a 
comparison of results obtained from WorldDEM and other freely 

available DEMs, the percentage of coastline assigned to different cate
gories shows the most disparities at the very high vulnerability category. 
Also, in the lowest vulnerable category, the variations observed are at 
their smallest degrees (see Fig. 8). Thus, categorizing vulnerabilities for 
this Bonny coastline has been achieved using the CVI approach. Each 
classification has been observed to be a proportion of the effects 
resulting from the parameters like storm surges and elevation of the 
shorelines. However, further study on the flood mapping and use of 
cognitive approaches for the vulnerability maps are recommended in 
future study. 

4. Discussions 

This study highlighted the potential of employing CVI methods on 
open-access data in countries with limited data availability, including 
DEMs and shoreline change rates derived from Sentinel-1 GRD images. 
Along the Niger Delta coastline, the estimated vulnerability differs. 
Irrespective of the shoreline change rate or DEM employed, a total of 
40.1% to 58.9% of the coastline was classified as extremely or extremely 
highly vulnerable to SLR. This contradicts the previous research by 
Oyegun et al. (Oyegun et al., 2016), which categorised the entire 
coastline as high and very high vulnerability. They assessed CVI across 
the entire Niger Delta using 1986–2010 data which is long-term position 
of the shoreline and parameters derived from SRTM such as the shore
line elevation as well as coastal slope, among others. According to the 
findings of this investigation, between 35% and 60% of Bonny Island’s 

Table 5 
The computed table for the CVI criterion used to categorize the risks.  

Parameter Metrics on DEMs Minimum Mode Means S.D. Median or 50th percentile 75th percentile 25th percentile 

LRR 

MERIT  12.2  35.4  25.7  8.1  27.4  35.4  15.8 
BEST  10.0  27.4  23.0  7.7  22.4  28.3  15.8 
AW3D  7.1  31.6  23.0  7.3  24.5  31.6  14.1 
SRTM  10.0  27.4  23.1  7.3  24.5  31.6  15.8 

EPR 

MERIT  12.2  35.4  26.6  7.8  27.4  35.4  20.0 
BEST  10.0  27.4  23.8  7.4  24.5  31.6  15.8 
AW3D  7.1  31.6  23.9  7.1  24.5  31.6  15.8 
SRTM  10.0  31.6  24.0  7.2  24.5  31.6  17.3  
Total mean  9.8  31.0  24.1  7.5  25.0  32.1  16.3  

Fig. 7. A rundown on the CVI data obtained across the coast of the Niger Delta region.  
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shoreline is either highly vulnerable or have very high vulnerability. 
Thus, it is consistent with an earlier investigation by Musa et al. (Musa 
et al., 2014), which reported that the easternmost portion of the coast, 
from Bonny to Opobo, has the highest proportion of high to very high 
SLR vulnerability. Their study employed a novel approach to evaluate 
CVI by incorporating physical factors such as predicted shoreline 
change, SRTM-derived coastal slope/elevation, and five additional 
criteria related to social and human effect. The results clearly demon
strate that classifications can vary significantly, as CVI estimations are 
contingent upon the assessment method, parameter ranks, and data 
utilised. The presence of errors in estimating vulnerability can impact 
coastal management. It is necessary to minimise or accurately measure 
the uncertainties related to the CVI approaches, as discussed by Koroglu 
et al. (Koroglu et al., 2019). 

In regions devoid of ground truth data, the estimation of un
certainties presents an enormous challenge. Conversely, the sensitivity 
of CVI estimates to various parameters, methods, and rankings can be 
examined, as demonstrated in this study (e.g., Koroglu et al. (Koroglu 
et al., 2019)). This can subsequently aid in identifying the regions 
exhibiting disparities in rankings, necessitating subsequent monitoring 
in the future. This study examined the impact of shoreline change rates 
and digital elevation models (DEMs) on the accuracy of the coastal 
vulnerability index (CVI) calculations. Consistency was maintained in 
the study by using the same approach and ranking criteria. Different 
shorelines change and DEMs, along with other geomorphology and 
physical factors, were utilised, while ensuring that these parameters 
remained constant. Although the study utilised the same 5-year shore
line position data obtained from Sentinel 1 imagery, it revealed that the 
ranking of 1.5–5% of the coastline can vary depending on the approach 
employed to estimate the rate of shoreline change and therefore deter
mine the ranking (Fig. 3 and Table 5). The disparity in ranking can 
impact the comprehensive evaluation of susceptibility. The findings of 
this study indicate that the EPR method yielded higher rates of change 
estimation, leading to a greater allocation of coastline to the high and 
very high-risk categories. For example, the headland at Bonny, the 
mouth of the Andoni River, the vicinity of the Imo and Ibo rivers, and the 
area near the mouth of the Cross rivers are regions where littoral erosion 
predominates in the CVI. In other investigations, disparities in shoreline 

change rate between the EPR and LRR methodologies have been docu
mented. According to the study by Kankara et al. (Kankara et al., 2014), 
while EPR proves to be beneficial in assessing short-term shoreline 
change, it possesses intrinsic constraints when applied to long-term 
shoreline change due to its consideration of only two shorelines. In 
contrast, the LRR method accounts for all shoreline positions, rendering 
it compactable for linear change in both space and time (Chand and 
Acharya, 2010). This implies that utilising LRR estimations may offer 
greater reliability for future research, perhaps resulting in the classifi
cation of up to 10% of the coastline into a higher vulnerability category. 
This study established that the rate at which the shoreline changes is the 
main factor contributing to the small-scale variance in the Coastal 
Vulnerability Index (CVI), which aligns with prior research conducted 
by Thieler and Hammar-Klose (Thieler and Hammar-Klose, 2000), 
Abuodha and Woodroffe (Abuodha and Woodroffe, 2010), and Gaki- 
Papanastassiou et al. (Gaki-Papanastassiou et al., 2010). The findings 
differ from those reported by Thieler and Hammar-Klose (2000), who 
observed that coastline erosion has a greater influence on the CVI, even 
when other factors are held constant or vary. In addition, the un
certainties related to the rates of shoreline change are not solely caused 
by the methods used to calculate these rates. They also arise from the 
process of determining the shoreline positions using satellite images. For 
example, errors in the shoreline position can range from 10 to 430m 
(Dike et al., 2023), which in turn can impact the rate of shoreline change 
and the Coastal Vulnerability Index (CVI) estimates. 

The assessment of coastal vulnerability relies heavily on local coastal 
elevation, as extreme weather events can cause sea levels to rise over the 
maximum elevation, resulting in flooding. Although open-access data 
has made some progress in enhancing spatial resolution and vertical 
accuracy, it still falls short of being optimal for estimating local coastline 
elevation, especially in vegetated regions. This study evaluated the 
impact of four open-access DEMs (SRTM, BEST, MERIT, and AW3D) and 
one commercially accessible DEM (WorldDEM) on the accuracy of CVI 
estimates. The DEMs had spatial resolutions ranging from 12 to 90m and 
varied in vertical accuracy. The spatial variability of the CVI was pri
marily influenced by the coastal elevation parameter, as anticipated. 
The method by which coastal elevation is derived from the DEM has a 
significant impact on the estimated vulnerability of the coastline. Figs. 4 

Fig. 8. A rundown on the CVI data in this region for the Bonny coast.  
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and 5 illustrate a ranking discrepancy ranging from 0 to 1 in accordance 
with the DEM employed. Qualitative assessment on the location with 
different rankings showed that these were mainly areas with lots of tree 
cover, indicating that vegetation-related height differences (artefacts) in 
these models might have more influence on the resulting CVI than 
spatial resolution. The disparity in rankings, nevertheless, widened 
when comparing the rankings computed using open-access DEMs to 
those obtained from commercially available DEMs with authorised 
vertical accuracy and a 12 m resolution. Accordingly, local estimate 
coastal elevation and vulnerability rankings will be impacted by spatial 
resolution, particularly along coastlines with varied topography along 
the shore. The DEM that showed the highest degree of similarity in 
ranking across commercially available options was MERIT. If the 
commercially available Digital Elevation Model (DEM) has been verified 
using ground truth data, then the MERIT DEM would be the most 
optimal open-access alternative. Nevertheless, 66% of the coastline still 
exhibits a disparity in ranking for one category. This may be attributed 
to the existence of artefacts in the commercially available high- 
resolution model, as well as the presence of MERIT. It is still uncertain 
if all biases have been eliminated from DEMs and if excessive filtering 
was used. The identical pattern identified in the ranking of coastal 
elevation can also be discerned in the CVI estimates. The most signifi
cant disparities lie in the vulnerability categories classified as high to 
very high, and it has yet to be determined whether these discrepancies 
are a result of overestimating elevations using SRTM, BEST, and AW3D. 

This study showed that CVI methods can be useful tool for identi
fying vulnerable coastal areas in data-poor countries but there is still 
scope for further improvement. There is scope for deriving higher res
olution DEMs in data poor countries using satellite images and there is 
potential for these to be derived from Sentinel 1 images. The land-cover 
information derived from Sentinel-1&2 images can assist in identifying 
vegetated areas where elevation data might be of lower accuracy. In this 
study, coastal elevation, which is mostly used for assessing vulnerability 
to and risk of coastal flooding was used instead of the coastal slope. The 
coastal slope parameter has been widely used to calculate CVI around 
the world and might be more appropriate to use when the main hazard is 
coastal erosion. This parameter has its own limitations because the 
ability to generate an accurate near-beach slope is dependent on the 
proximity of the reference-DEM data to the current shoreline position. 
Furthermore, previous studies that have used beach slope to assess 
coastal vulnerability have tended to overestimate slope hence underes
timate the extent of flooding (Diaz et al., 2019). It is noteworthy that 
both open-access and commercial DEMs have similar challenges in the 
study area in this respect. In future, the nearshore slope derived from 
higher resolution coastal DEMs will need to be merged with the slope of 
the beach face, which can be derived from shoreline positions derived 
from satellite images merged with near shore bathymetry. 

Additionally, satellite photography can be utilised to extract other 
metrics such as wave height, tidal range, and geomorphology categori
zation (refer to Hamid et al. (Hamid et al., 2021)). In order to account for 
the spatial differences in Coastal Vulnerability Index (CVI), it is imper
ative to possess shoreline change data that has been thoroughly vetted. 
Enhanced resolution and spatial and temporal coverage of shorelines 
derived from satellite imagery will aid in the reduction of uncertainty in 
shoreline change rate data. Nevertheless, validation under local condi
tions will be necessary. Optimisation of littoral detection methods and 
classification of associated uncertainties can be achieved by considering 
factors such as the resolution of the image and the methodology 
employed in satellite image processing. When capturing shorelines, it is 
important to take into account uncertainties caused by variations in 
beach slope, wave heights, offset resulting from saltwater light absorp
tion, tidal behaviour, and surge level. Additional attention should be 
directed towards the rankings (Koroglu et al., 2019) and the method
ologies employed (Diaz et al., 2019; Fogarin et al., 2023; Tsai, 2022; 
Cabezas-Rabadán et al., 2019). Furthermore, this study, like others 
conducted by Koroglu et al. (Koroglu et al., 2019), demonstrated that 

conducting a sensitivity evaluation can be useful in pinpointing regions 
with significant uncertainties (Mishra et al., 2023a; Mishra et al., 2022a; 
Mishra et al., 2022b; Mishra et al., 2023b), hence indicating the ne
cessity for additional assessment. 

The study points out the need for higher resolution DEMs and 
improved methods for shoreline detection and emphasizes the impor
tance of understanding and reducing uncertainties associated with these 
methods and data. In conclusion, the study demonstrates the applica
bility of the CVI method with open-access data for assessing coastal 
vulnerability in a data-poor country like Nigeria, providing valuable 
insights for stakeholders and decision-makers in coastal protection and 
adaptation strategies. 

5. Recommendations 

The research findings pertaining to the rate of shoreline change and 
the ranks of coastal elevation in the Niger Delta provide a basis for 
formulating practical suggestions for researchers and environmental 
managers. These recommendations are stated as follows:  

i. Integrating Multiple Methods for Shoreline Change Analysis: It is 
recommended to employ a combination of the End-Point Rate 
(EPR) and Linear Regression Rate (LRR) methodologies in order 
to conduct a comprehensive analysis, as the rankings of shoreline 
change exhibit minimal discrepancies between the two ap
proaches. This methodology has the potential to effectively 
document and analyse both immediate and prolonged alterations 
in coastal areas, hence enhancing the comprehensive evaluation 
of susceptibility to coastal hazards.  

ii. Utilising Various DEMs for Coastal Elevation Analysis: The 
research emphasizes notable discrepancies in coastal elevation 
rankings depending on the digital elevation model (DEM) uti
lised. It is recommended that researchers and environmental 
managers use a multi-dimensional approach by utilising various 
Digital Elevation Models (DEMs) to enhance the accuracy of their 
assessments about coastal elevation and vulnerability. This 
approach should involve the utilisation of both open-access 
DEMs, such as SRTM, AW3D, BEST, MERIT, as well as commer
cial DEMs, such as WorldDEM. By employing different DEMs and 
doing cross-validation, a more precise comprehension of coastal 
elevation and vulnerability may be achieved.  

iii. Critical Analysis of DEM Selection: The selection of a digital 
elevation model (DEM) can have a substantial impact on 
vulnerability assessments. Environmental managers are advised 
to conduct a thorough examination of the spatial resolution, 
vertical accuracy, and post-processing biases associated with 
digital elevation models (DEMs). In regions characterised by 
intricate topography or substantial vegetation, it is advisable to 
prioritise the utilisation of higher resolution Digital Elevation 
Models (DEMs) or those that have undergone more effective bias 
correction techniques.  

iv. Regular Updating of Coastal Vulnerability Assessments: The 
study proposes that it is essential to conduct periodic updates of 
vulnerability assessments in coastal areas, incorporating the most 
up-to-date information on shoreline change and coastal heights.  

v. Incorporating Local Data and Ground-Truthing: It is advisable to 
complement satellite data and digital elevation models (DEMs) 
with locally collected ground-truth data whenever feasible. This 
methodology has the potential to validate and enhance the out
comes derived from remote sensing and modelling 
methodologies.  

vi. Comprehensive Risk Communication: When communicating risk 
to stakeholders, such as local communities and policymakers, it is 
of utmost importance to provide a comprehensive explanation of 
the potential variability and uncertainty inherent in the 
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assessments. This variability and uncertainty arise from the uti
lisation of many methods and data sources.  

vii. Developing Adaptive Management Strategies: Considering the 
diverse range of vulnerability assessments, it is imperative for 
coastal management methods to possess a flexible and adaptive 
nature. The capacity to be modified in response to the availability 
of new data or changing environmental conditions should be 
ensured.  

viii. Focusing on Highly Vulnerable Areas: The prioritisation should 
be focused on places that have consistently been identified as 
very vulnerable or exceptionally susceptible using a range of 
approaches and data sources. These locations should be priori
tised for prompt implementation of management strategies, such 
as reinforcement, controlled retreat, or conservation initiatives.  

ix. Research on Local Variability: It is recommended to encourage 
thorough examinations of localised variations in shoreline dy
namics and coastal elevation to gain an in-depth knowledge of 
the specific elements that contribute to vulnerability in different 
coastal segments, particularly in areas experiencing notable 
transformations.  

x. Cross-Disciplinary Collaboration: Participate in a collaborative 
effort across multiple disciplines, encompassing geospatial anal
ysis, oceanography, coastal engineering, and community plan
ning, in order to successfully tackle the complex aspects of coastal 
vulnerability. 

6. Conclusion 

This investigation has been carried out to present the applicability of 
satellite images in data-deficient regions of the Niger Delta region in 
Nigeria. Thus, data was obtained and analysed using DEMs derived from 
the satellite images. This study makes use of SAR-derived coastline data 
for a five-year period (2015–2020) and a number of DEMs acquired from 
satellite images to compile its findings. In this study, the LRR and the 
EPR techniques that were employed for ranking the shoreline change 
rates had their respective results compared. In addition to this, it does 
comparisons on CVI estimates that were derived utilising various ar
rangements of combined DEMs and combined shoreline change rates. 
Additionally, it evaluates the spatial heterogeneity that exists within 
these estimates. This was accomplished by analysing the elevation 
rankings provided by a number of different DEMs that were freely 
accessible online. The findings of this study reveal that there is a vari
ance in CVI estimations along the coastline of the Niger Delta. The re
sults of this study have shown that the CVI approach may be applied 
with open-access data to evaluate coastal vulnerability in a country like 
Nigeria that has a shortage of data. This was proved by the findings of 
this research. Because other parameters were given constant values 
along the entire coastline, the CVI exhibits a spatial variance that is 
dependent on the shoreline change method and the coastal elevation 
that was obtained from the multiple DEMs. This is because other pa
rameters were given constant values along the entire coastline. This 
variation is due to the fact that some parameters were fixed at their 
levels throughout the analysis. According to the methodology that is 
currently being used for ranking, the criteria were given a ranking on a 
scale that ranged from 1 to 5, with 1 denoting “extremely low” sus
ceptibility and 5 denoting “very high” risk. Other contributions to 
knowledge include some vulnerability maps that were generated from 
the sensitivity assessment for this region. 

From this study, the examination of data using CVI with both the LRR 
and EPR approaches were achieved to obtain the shoreline change rate 
and the characteristics of the vulnerabilities. It demonstrates that there 
are only slight changes in the regional distribution of vulnerability. The 
very high vulnerability as well as the very low vulnerability categories 
are where the researchers found that these changes appeared and were 
most clearly seen as evident in those sections. Also, it has been 
demonstrated herein, that the coastal elevation figures in this study that 

were obtained from the various DEMs has greater impact on the spatial 
variation of the CVI. When comparison is made to other open-access 
DEMs, this MERIT product causes the highest and very highest vulner
ability categories to be given to a greater proportion of the coastline than 
any of the other DEMs. In addition, when comparisons are made with 
other open-access DEMs, the MERIT product resulted within the smallest 
percentage of coastline falling into the intermediate vulnerability group. 
The study of CVI utilising LRR and EPR to determine shoreline change 
rate finds relatively small degree of vulnerability. In addition, it has been 
demonstrated that the coastal elevation produced from various DEMs 
has a greater impact on the spatial variance of the CVI. In other words, 
when compared to other open-access DEMs, the MERIT product places a 
greater amount of the coastline into groups on highly vulnerable as well 
as being very highly vulnerable. 

The findings offer stakeholders and decision-makers with data as 
valuable resource for developing strategies on sustainable coastal pro
tection, as well as adapting to threats around climate change in coastal 
habitat. When it comes to informing coastal preservation decisions, the 
findings give decision-makers as well as stakeholders with a vital 
resource to employ. In addition to this, it offers information regarding 
the region as well as coastal resilience to climate change-related chal
lenges in the coastal environment of the Niger delta. In conjunction with 
this, it is useful in the formulation of policies and strategies for the 
implementation of integrated coastal zone management (ICZM). Since 
satellite image analysis has been highlighted as a potentially potent 
instrument used to monitor coastal shoreline positions, this research 
employed it to solve a coastal problem involving the delineation of 
shorelines using DEMs. Consequently, SAR imagery could be supple
mented with optical imagery captured directly or derived from available 
domains, enabling ongoing reference and accuracy studies for shore
lines. In the future, it may be possible to obtain environmental data as 
well as geographical data in the Niger Delta region of Nigeria utilising 
other sophisticated image processing techniques. 
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Franczyk, A., 2022. Information extraction from satellite-based Polarimetric SAR 
data using simulated annealing and SIRT methods and GPU processing. Energies 15, 
72. https://doi.org/10.3390/en15010072. 

Ramieri, E., Hartley, A., Barbanti, A., Santos, F.D., Ana Gomes, M.H., Laihonen, P., 
Marinova, N., Santini, M., 2011. Methods for Assessing Coastal Vulnerability to 
Climate Change. European Topic Centre on Climate Change Impacts. Vulnerability and 
Adaptation, European Environment Agency. Available at: https://www.eionet. 
europa.eu/etcs/etc-cca/products/etc-cca-reports/1/@@download/file/TP_1-2011. 
pdf (Accessed 19 Sept. 2023).  

Sam, K., Zabbey, N., Gbaa, N.D., Ezurike, J.C., Okoro, C.M., 2023. Towards a framework 
for mangrove restoration and conservation in Nigeria. Regional studies in marine. 
Science, 103154. https://doi.org/10.1016/j.rsma.2023.103154. 

Sankari, T. Siva, Chandramouli, A.R., Gokul, K., Surya, S.S., Mangala & Saravanavel, J., 
2015. Coastal vulnerability mapping using geospatial Technologies in Cuddalore- 
Pichavaram Coastal Tract, Tamil Nadu, India. Aquatic Procedia 4, 412–418. https:// 
doi.org/10.1016/j.aqpro.2015.02.055. 

Sexton, W.J., Murday, M., 1994. The morphology and sediment character of the coastline 
of Nigeria: the Niger Delta. J. Coast. Res. 10, 959–977. Available at: http://www. 
jstor.org/stable/4298288 (Accessed 19 Sept. 2023).  

Sharma, J., Ravindranath, N.H., 2019. Applying IPCC 2014 framework for hazard- 
specific vulnerability assessment under climate change. Environmental Research 
Communications 1, 051004. https://doi.org/10.1088/2515-7620/ab24ed. 

Sentinel-1 Data. Sentinel-1 - Missions - Sentinel Online - Sentinel Online (esa.int) 
Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-1 
(Accessed 19 Sept. 2023). 

Shaw, J., Taylor, R.B., Forbes, D.L., Ruz, M.H. & Solomon, S 1998. Sensitivity of the 
Canadian Coast to Sea-Level Rise. Geological Survey of Canada Bulletin 505. 
Geological Survey of Canada. Available 1038 at: https://www.academia.edu/276 
52398/Sensitivity_of_the_coasts_of_Canada_to_sea_level_rise 1039 (Accessed 19 Sept. 
2023). 

Sheik Mujabar, P., Chandrasekar, N., 2013. Coastal erosion hazard and vulnerability 
assessment for southern coastal Tamil Nadu of India by using remote sensing and 
GIS. Nat. Hazards 69, 1295–1314. https://doi.org/10.1007/s11069-011-9962-x. 

Shortridge, Ashton, Messina, Joseph, 2011. Spatial structure and landscape associations 
of SRTM error. Remote Sens. Environ. 115, 1576–1587. 

SRTM, 2018. SRTM 90m DEM digital elevation database. CGIAR - Consortium for Spatial 
Information (CGIAR-CSI). Available at: https://srtm.csi.cgiar.org/ (Accessed 19 
Sept. 2023).  

Tadono, T., Takaku, J., Tsutsui, K., Oda, F. & Nagai, H. Status of “ALOS World 3D 
(AW3D)” global DSM generation. Proceedings of the 2015 IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS), 26–31 July 2015. MIlan, 
Italy. Pages 3822–3825. doi:https://doi.org/10.1109/IGARSS.2015.7326657. 

Tahri, M., Maanan, M., Maanan, M., Bouksim, H., Hakdaoui, M., 2017. Using fuzzy 
analytic hierarchy process multi-criteria and automatic computation to analyse 
coastal vulnerability. Prog. Phys. Geogr. 41 (3), 268–285. https://doi.org/10.1177/ 
0309133317695158. 

Tano, R.A., Aman, A., Kouadio, K.Y., Toualy, E.E., Ali, K.E., Assamoi, P., 2016. 
Assessment of the Ivorian coastal vulnerability. J. Coast. Res. 32 https://doi.org/ 
10.2112/JCOASTRES-D-15-00228.1. 

Thieler, E.R., Hammar-Klose, E.S., 2000. National assessment of coastal vulnerability to 
sea-level rise; preliminary results for the U.S. Pacific Coast. Open-File Report. U.S. 
Geological Survey (USGS), Massachusetts, USA. Available at: https://pubs.usgs.gov/ 
dds/dds68/reports/westrep.pdf. 

Tighe, M. L. & Chamberlain, D. 2009. Accuracy comparison of the SRTM, ASTER, NED, 
NEXTMAP, USA digital terrain model over several USA study sites DEMs. ASPRS/ 

E.C. Dike et al.                                                                                                                                                                                                                                  

https://www.researchgate.net/publication/303244576
https://www.researchgate.net/publication/303244576
https://www.researchgate.net/publication/260244471
https://www.researchgate.net/publication/260244471
https://doi.org/10.1007/s11069-016-2413-y
https://doi.org/10.1016/j.ocecoaman.2019.05.001
https://doi.org/10.3389/feart.2016.00036
https://doi.org/10.3389/feart.2016.00036
https://doi.org/10.1016/j.rse.2017.12.026
https://doi.org/10.1007/s10712-022-09757-6
https://doi.org/10.1007/s10712-022-09757-6
https://doi.org/10.1111/j.1467-9671.2010.01217.x
https://doi.org/10.3390/jmse11040871
https://doi.org/10.3390/jmse11040871
https://doi.org/10.5194/nhess-13-3291-2013
https://doi.org/10.5194/nhess-13-3291-2013
https://doi.org/10.3763/ehaz.2010.0052
https://doi.org/10.3763/ehaz.2010.0052
https://doi.org/10.3390/rs13020275
https://doi.org/10.3390/rs13020275
https://doi.org/10.1016/j.ejar.2023.08.001
https://doi.org/10.1016/j.scitotenv.2021.150769
https://doi.org/10.1016/j.scitotenv.2021.150769
https://doi.org/10.1016/j.marpolbul.2021.113262
https://doi.org/10.1016/j.marpolbul.2021.113262
https://doi.org/10.1016/j.scitotenv.2022.159625
https://doi.org/10.1016/j.scitotenv.2022.159625
https://doi.org/10.1016/j.scitotenv.2023.162488
https://doi.org/10.1016/j.scitotenv.2023.162488
https://doi.org/10.1016/j.ocecoaman.2019.104948
https://doi.org/10.1016/j.oceaneng.2023.114892
https://doi.org/10.5194/nhess-14-3317-2014
https://doi.org/10.1007/s11852-009-0042-2
https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter6-1.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg2-chapter6-1.pdf
https://www.nigerialng.com/media/Pages/Publications.aspx
https://www.nigerialng.com/media/Pages/Publications.aspx
https://doi.org/10.1016/j.ejrs.2017.05.001
https://doi.org/10.1016/j.ejrs.2017.05.001
http://refhub.elsevier.com/S0048-9697(24)00969-0/rf0270
http://refhub.elsevier.com/S0048-9697(24)00969-0/rf0270
https://doi.org/10.1016/j.rse.2016.04.018
https://doi.org/10.3390/su14042097
https://doi.org/10.3390/su14042097
https://www.questjournals.org/jrees/papers/vol2-issue8/A280108.pdf
https://www.questjournals.org/jrees/papers/vol2-issue8/A280108.pdf
http://conference.bonfring.org/papers/gct_icmf2013/icmf218.pdf
http://conference.bonfring.org/papers/gct_icmf2013/icmf218.pdf
https://doi.org/10.3390/en15010072
https://www.eionet.europa.eu/etcs/etc-cca/products/etc-cca-reports/1/@@download/file/TP_1-2011.pdf
https://www.eionet.europa.eu/etcs/etc-cca/products/etc-cca-reports/1/@@download/file/TP_1-2011.pdf
https://www.eionet.europa.eu/etcs/etc-cca/products/etc-cca-reports/1/@@download/file/TP_1-2011.pdf
https://doi.org/10.1016/j.rsma.2023.103154
https://doi.org/10.1016/j.aqpro.2015.02.055
https://doi.org/10.1016/j.aqpro.2015.02.055
http://www.jstor.org/stable/4298288
http://www.jstor.org/stable/4298288
https://doi.org/10.1088/2515-7620/ab24ed
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://www.academia.edu/27652398/Sensitivity_of_the_coasts_of_Canada_to_sea_level_rise
https://www.academia.edu/27652398/Sensitivity_of_the_coasts_of_Canada_to_sea_level_rise
https://doi.org/10.1007/s11069-011-9962-x
http://refhub.elsevier.com/S0048-9697(24)00969-0/rf0325
http://refhub.elsevier.com/S0048-9697(24)00969-0/rf0325
https://srtm.csi.cgiar.org/
https://doi.org/10.1109/IGARSS.2015.7326657
https://doi.org/10.1177/0309133317695158
https://doi.org/10.1177/0309133317695158
https://doi.org/10.2112/JCOASTRES-D-15-00228.1
https://doi.org/10.2112/JCOASTRES-D-15-00228.1
https://pubs.usgs.gov/dds/dds68/reports/westrep.pdf
https://pubs.usgs.gov/dds/dds68/reports/westrep.pdf


Science of the Total Environment 919 (2024) 170830

17

MAPPS 2009 Fall Conference. San Antonia, Texas. Available at: https://www.asprs. 
org/a/publications/proceedings/sanantonio09/Tighe_2.pdf (Accessed 19 Sept. 
2023). 

Tsai, Y.L.S., 2022. Monitoring 23-year of shoreline changes of the Zengwun estuary in 
southern Taiwan using time-series Landsat data and edge detection techniques. Sci. 
Total Environ. 839, 156310 https://doi.org/10.1016/j.scitotenv.2022.156310. 

USGS, 2021. Earth Explorer Database. U.S. Department of the Interior (Available at: htt 
ps://earthexplorer.usgs.gov/; Accessed 19 Sept. 2023)).  

Usoro, Etop, 2010. Nigeria. In: BIRD, E.C.F. (Ed.), Encyclopedia of the World’s Coastal 
Landforms. Springer Netherlands, Dordrecht.  

Vos, K., Splinter, K.D., Harley, M.D., Simmons, J.A., Turner, I.L., 2019. CoastSat: A 
Google Earth engine-enabled Python toolkit to extract shorelines from publicly 

available satellite imagery. Environ. Model. Software 122. https://doi.org/10.1016/ 
j.envsoft.2019.104528. 

Yamazaki, D. (2018). MERIT DEM: multi-error-removed improved-terrain DEM. Institute 
of Industrial Sciences, the University of Tokyo, Japan. Available at: http://hydro.iis. 
u995 tokyo.ac.jp/~yamadai/MERIT_DEM/ (Accessed 19 Sept. 2023). 

Yamazaki, Dai, Ikeshima, Daiki, Tawatari, Ryunosuke, Yamaguchi, Tomohiro, 
O’Loughlin, Fiachra, Neal, Jeffery C., Sampson, Christopher C., Kanae, Shinjiro, 
Bates, Paul D., 2017. A high-accuracy map of global terrain elevations. Geophys. Res. 
Lett. 44, 5844–5853. https://doi.org/10.1002/2017GL072874. 

Yin, J., Yin, Z., Wang, J., Xu, S., 2012. National assessment of coastal vulnerability to sea- 
level rise for the Chinese coast. J. Coast. Conserv. 16, 123–133. https://doi.org/ 
10.1007/s11852-012-0180-9. 

E.C. Dike et al.                                                                                                                                                                                                                                  

https://www.asprs.org/a/publications/proceedings/sanantonio09/Tighe_2.pdf
https://www.asprs.org/a/publications/proceedings/sanantonio09/Tighe_2.pdf
https://doi.org/10.1016/j.scitotenv.2022.156310
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://refhub.elsevier.com/S0048-9697(24)00969-0/rf0360
http://refhub.elsevier.com/S0048-9697(24)00969-0/rf0360
https://doi.org/10.1016/j.envsoft.2019.104528
https://doi.org/10.1016/j.envsoft.2019.104528
http://hydro.iis.u995
http://hydro.iis.u995
http://tokyo.ac.jp
https://doi.org/10.1002/2017GL072874
https://doi.org/10.1007/s11852-012-0180-9
https://doi.org/10.1007/s11852-012-0180-9

	Coastal Vulnerability Index sensitivity to shoreline position and coastal elevation parameters in the Niger Delta region, N ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Methods
	2.3 Coastal Vulnerability Index computation
	2.4 Parameters for coastal vulnerability
	2.5 Parameters and descriptions
	2.5.1 Shoreline change rate
	2.5.2 Coastal elevations
	2.5.3 Other parameters
	2.5.3.1 Geomorphology
	2.5.3.2 Relative sea level changes
	2.5.3.3 Mean wave height
	2.5.3.4 Mean tidal ranges


	2.6 Comprehensive detail on tests

	3 Results
	3.1 Rankings for the shoreline change rates
	3.2 Ranking of coastal elevation
	3.3 The rankings for the coastal elevations along the Bonny coast
	3.4 The CVI estimations
	3.5 Vulnerability map for the Niger Delta coast
	3.6 Categorizing vulnerabilities for the Bonny coastline

	4 Discussions
	5 Recommendations
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


