
PILeT: an Interactive Learning Tool To Teach Python

Bedour Alshaigy
Department of Computing and
Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

12012361@brookes.ac.uk

Samia Kamal
Department of Computing and
Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

skamal@brookes.ac.uk

Faye Mitchell
Department of Computing and
Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

frmitchell@brookes.ac.uk
Clare Martin

Department of Computing and
Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

cemartin@brookes.ac.uk

Arantza Aldea
Department of Computing and
Communication Technologies

Oxford Brookes University
Oxford, United Kingdom

aaldea@brookes.ac.uk

ABSTRACT
This paper describes a planned investigation into how learn-
ing styles and pedagogical methodologies can be embedded
into an e-learning tool to assist students’ learning program-
ming. The objective of the research is to test the hypoth-
esis that combining multiple teaching methods to accom-
modate different learners’ preferences will significantly im-
prove comprehension of concepts, which in turn increases
students’ confidence and as a consequence performance in
programming. An interactive learning tool to teach Python
programming language to students, called PILeT, has been
developed to test the hypothesis. The tool aims to be adapt-
able to the students’ learning style and as such it will teach
programming using several techniques (e.g. visual, textual,
puzzles) to appeal to each preference. PILeT is suitable for
secondary school students or teachers wishing to undertake
CPD (Continuing Professional Development). PILeT will
be tested on first year undergraduate students at Oxford
Brookes University.

CCS Concepts
•Social and professional topics → Computer science
education; Student assessment;

Keywords
Computer science education, e-learning tools, introductory
programming

1. INTRODUCTION
For many students, programming is considered the most

difficult task in computer science classes. Although sev-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiPSCE ’15, November 09-11, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3753-3/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2818314.2818319

eral factors have been attributed to students’ failure to ac-
quire programming skills such as problem solving abilities,
self-efficacy and mental models to name a few [11], we are
far from fully understanding the underlying reasons behind
different progression rates amongst them. Evidence from
the literature review strongly implicated teaching techniques
adopted whilst teaching programming [2], students’ learning
preference [6], in addition to the choice of the first program-
ming language taught [7].

With the prevalence of mobile devices and e-learning, many
instructors are in favour of using innovative courseware in
teaching [5]. Some of these tools have been proven effective
in improving students’ retention and engagement by using
games to teach a concept [3] or providing a user friendly
environment with less cryptic error messages and feedback
to support students’ programming [8]. However many fail
to address critical cognitive and programming skills, and do
not take into account the different learning styles found in
a diverse cohort of students.

This paper introduces PILeT, a web-based interactive tool
designed to teach Python to anyone with an interest in learn-
ing programming. The tool’s novel contribution is that it
will offer a combination of pedagogical methods to support
the student’s learning style. Therefore, each programming
concept will be explained using videos, reading material, ex-
amples, exercises and puzzles adequately on its own or in
combination with the other methods. Additionally multi-
ple choice questions are available at the end of each lesson
to assess the students understanding of the taught concept.
This way, each student can learn from the teaching tech-
nique they are most comfortable with, or use a mixture of
several ways to support their learning [10].

2. PYTHON INTERACTIVE LEARNING TOOL
(PILET)

In light of the literature review findings, a prototype of a
web-based, Python Interactive Learning Tool (PILeT) has
been developed. The tool incorporates several teaching meth-
ods (visualisation, example and exercises, and puzzles) suit-
able for different learners.

PILeT consists of three layers (Figure 1):

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2818314.2818319&domain=pdf&date_stamp=2015-11-09

Figure 1: PILeT Architecture

1. A front end graphical user interface (GUI) that dis-
plays the teaching material to the user.

2. PILeT system that provides different learning resources
to support their learning.

3. A back end database that stores the user’s login infor-
mation, course submissions, their learning style profile,
and the different learning resources used to teach the
module

Additionally, Google Analytics tracks and measures the
student’s interactions with the interface such as number of
video plays and mouse clicks.

The student accesses the course material using the GUI.
PILeT records the student’s behaviour with different GUI
elements and creates a learning style profile for the student
based on those interactions. PILeT then uses the student’s
profile to select the most suitable teaching material and de-
liver it to the adaptable interface for the user. Hence, the
more the student uses the tool, the higher the match be-
tween the material presented to the student and their learn-
ing preference. The material is:

• Textual description of the concept. The content was
teaching material in form of lecture notes or slides.

• A visual explanation of the concept, either:

– A video with a live demonstration of the concept.

– Static tables, flowcharts and illustrations that de-
scribe the different states of the program or func-
tion activity.

– Online Python Tutor [4]: an embedded step-by-
step animated visualisation of executed code and
data structures.

• Executable Python examples (Figure 2) that can be
compiled and edited. This encourages students to ex-
periment with the code (e.g. “What happens if I do
this instead?” ...).

• Programming exercises that can be implemented in an
embedded interpreter, with a sample solution and dis-
cussion tab. The sample solution will be revealed to
the student after 10 tries. Students are encouraged to
talk about different problem solutions and code effi-
ciency in their discussions. The instructor will screen
the submissions to ensure that no obvious hints or so-
lutions are posted.

• Parson’s programming puzzles [9]: an exercise that
involves rearranging code blocks in the correct order
(Figure 3). The nature of the exercises promotes rea-
soning and logical skills and motivates students into
learning.

Figure 2: Executable Python Examples

Figure 3: Parson’s Programming Puzzles

• Assessment at the end of each session in the form of
multiple choice questions and checkboxes. This helps
the students revise and retain the learned constructs
and to identify any gaps in knowledge where the in-
structor can provide extra support.

This framework combines several of the most popular pro-
gramming pedagogies that effectively increases retention and
motivation in students with different abilities, and appeals
to their learning style. It also allows the instructor to mon-
itor the learners’ development and support the struggling
group. As such, this framework could be adopted to teach
other programming languages such as Java.

3. MODULE DELIVERY MODE
The Module “Modern Computing Technology” is a gen-

eral introduction to the stages of designing and implement-
ing programs using Python programming language. It is
a compulsory module for first year undergraduate students
at Oxford Brookes University. The 12 week module con-
sists of two 3 hour practical sessions per week. The module
is delivered using the apprenticeship model [1] where stu-
dents are exposed to a programming concepts using Power-
Point slides then spend time practising these concepts using
short Python programming exercises under the supervision
of their lecturer. The module also provides a list of recom-
mended books in addition to online resources (e.g. e-books,
YouTube). At the end of the practical session, students

are expected to solve a multiple choice quiz and submit the
answers to the weekly exercises on the university’s virtual
learning environment (VLE). While students are advised to
take advantage of all of the learning materials available for
them, they mostly stick with what is used in the sessions,
the slides and exercises, for two reasons: one because that
is what the instructor used to teach them in the lab and the
other because of all the effort that involves finding just the
right material to suit their learning.

4. PRELIMINARY STUDY DESIGN
The study is quantitative in nature. The collected data

will be in the form of questionnaire results, exercise submis-
sions and a record of the users’ interaction with the website
using Google Analytics. In order to prove the hypothesis,
three stemmed research questions must be addressed:

• RQ1: are students capable of identifying their own
learning style?

• RQ2: does a relationship exist between a specific teach-
ing method and a student’s preference in learning pro-
gramming?

• RQ3: do students adhere to the original learning style
they identify with or rely on a combination of learning
techniques?

The experiment will take place from week 1 till week 8 in
semester 1 in which the students will use PILeT on three
separate occasions (during week 1, week 4 and week 7). In
each week, they will learn a specific programming concept
that will eventually be taught the following week in the lec-
ture (week 2, week 5 and week 8). Their learning progress
will be constantly monitored by tracking their online activity
and examining their exercise submissions.

4.1 Research Instruments

1. Index of Learning Style Questionnaire: developed by
Felder-Silverman [12], the questionnaire will be used
to identify the learning style students associate them-
selves with the most. It will be distributed to par-
ticipants twice; first at the beginning of the study in
week 1 and again in week 8. Responses from week 1
will be compared to responses in week 8 to detect any
changes in preferences during the semester and there-
fore answering RQ1.

2. Google Analytics: the website interactions will be re-
coded and analysed to verify which elements (i.e. vi-
sual, textual) participants heavily relied on to learn the
concepts. The tracking records will be used in com-
bination with their responses to the Felder-Silverman
questionnaire to answer RQ2 and RQ3. This will also
determine whether some concepts are taught better
using a specific teaching technique.

3. Exercise submissions: all the students enrolled in the
module will be asked to solve compulsory exercises at
the end of each lesson. The results of the experimental
group (PILeT users) will be compared to the control
group (non PILeT users) to measure the differences in
performance.

4.2 Participants
Participants in this study will be first year undergraduate

students at Oxford Brookes University. The study will be
introduced in week 1. Participation is voluntary, however, in
order to meet the participation requirements students must
commit to using PILeT on the specified occasions. Google
Analytics will be used to monitor their use and corroborate
with that fact. If they agree to take part, a 10 minutes
demonstration will take place at a computer lab to demon-
strate the features and functions of PILeT.

4.3 PILeT Implementation

Figure 4: Screenshot of PILeT

New students will be asked to register to PILeT. After
submitting profile information (i.e. username, first name,
surname, email, password and course name) a personal ac-
count is created and students can log in. The course name
field is used as a unique field to prevent other users who
are not affiliated with the course from accessing it. After
logging in, the student has the freedom to navigate between
different Python concepts.

When a student is logged in, they can select between
10 Python concepts to learn: Python primers, conditional
statements, loops, logic circuits, functions, global and local
variables, software development process, searching and sort-
ing, lists and classes and objects. Each concept is broken
down into two sessions to prevent the student of being over-
whelmed with several new ideas. Sessions are taught using
different teaching methodologies.

A normal session starts with an embedded video at the be-
ginning explaining the selected topic ideal for visual learners
(Figure 4). This is followed by an alternative which is a writ-
ten explanation for verbal users. Small executable examples

with nested code are readily available for execution for active
learners, and alternatively exercises for reflective students.
Sequential learners can use the Python Tutor to view a step
by step execution of the code or can use in combination with
the written material to reinforce their learning. Each stu-
dent is required to solve all the exercises in each session in
addition to the assessment questions to assess their learn-
ing. The submitted answers will be saved in the database.
The instructor will be able to mark the questions, provide
prompt feedback, and examine the progression rate of stu-
dent overall.

The first version of PILeT is not personalised, instead it
will display all of the different representations of the learning
material to examine the effect of combining multiple teach-
ing resources on learning a single programming concept.

5. CONCLUSION AND FUTURE WORK
This paper describes an ongoing preliminary study de-

signed to test the hypothesis that offering a combination
of pedagogical methods to accommodate to different learn-
ing styles will significantly increase programming compre-
hension and skills. The literature review that motivated the
study implicated teaching methodologies, learning styles and
the choice of the first programming language taught as the
major difficulties that learners encounter whilst program-
ming. Other than general recommendations and strategies
for teaching programming, the literature does not contain
any direct initiatives that take into consideration the stu-
dents’ learning preference. Additionally, although other ed-
ucational tools in use by other institutions show promising
results, they still ignore specific students’ needs by adopting
a single pedagogy. PILeT was developed to counter these
problems by consolidating different teaching methods that
individually cater to a group of learners. The tool will be
tested on campus. The study results will establish whether
a relationship does exist between the teaching process and
the preferred learning method in programming.

The tool’s framework enables it to be independent of the
programming language taught and could be used to teach
other programming languages (e.g. Java) or other comput-
ing concepts. PILeT might be particularly useful in large
classroom settings in secondary schools as a self learning
tool where students progress at different rates or for teach-
ers training to teach Python in school.

The next step is to collect, analyse and publish the re-
search results. We are hoping to replicate this study in the
following academic term to improve the validity and reliabil-
ity of the findings. The future plans include making the tool
adaptable for each student by defining the most appropriate
pedagogical practice to deliver each concept based on their
learning profile.

6. ACKNOWLEDGMENTS
The authors would like to thank Oxford Brookes Univer-

sity for supporting the study. The main author would also
like to thank the Saudi Arabian Cultural Bureau in London
for sponsoring her PhD research.

References
[1] A. Aldea, N. Crook, D. Duce, P. Marshall, C. Mar-

tin, and D. Sutton. Reflections on the evolution of the
teaching of programming to undergraduates at oxford

brookes university. In Brookes eJournal of Learning and
Teaching - Volume 7. Oxford Brookes University, 2015.

[2] J. Allert. Learning style and factors contributing to suc-
cess in an introductory computer science course. In Ad-
vanced Learning Technologies, 2004. Proceedings. IEEE
International Conference on, pages 385–389. IEEE,
2004.

[3] M. Eagle and T. Barnes. Wu’s castle: teaching arrays
and loops in a game. In ACM SIGCSE Bulletin, vol-
ume 40, pages 245–249. ACM, 2008.

[4] P. J. Guo. Online python tutor: embeddable web-based
program visualization for cs education. In Proceeding of
the 44th ACM technical symposium on Computer sci-
ence education, pages 579–584. ACM, 2013.

[5] A. Klašnja-Milićević, B. Vesin, M. Ivanović, and
Z. Budimac. E-learning personalization based on hybrid
recommendation strategy and learning style identifica-
tion. Computers & Education, 56(3):885–899, 2011.

[6] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers. In ACM
SIGCSE Bulletin, volume 37, pages 14–18. ACM, 2005.

[7] A. Mcgettrick, R. Boyle, R. Ibbett, J. Lloyd, G. Love-
grove, and K. Mander. Grand challenges in comput-
ing education: a summary. The Computer Journal,
48(1):42–48, 2005.

[8] C. Murphy, E. Kim, G. Kaiser, and A. Cannon. Back-
stop: a tool for debugging runtime errors. In ACM
SIGCSE Bulletin, volume 40, pages 173–177. ACM,
2008.

[9] D. Parsons and P. Haden. Parson’s programming puz-
zles: a fun and effective learning tool for first program-
ming courses. In Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52, pages
157–163. Australian Computer Society, Inc., 2006.

[10] L. Pollock and T. Harvey. Combining multiple pedago-
gies to boost learning and enthusiasm. In Proceedings
of the 16th annual joint conference on Innovation and
technology in computer science education, pages 258–
262. ACM, 2011.

[11] V. Ramalingam, D. LaBelle, and S. Wiedenbeck. Self-
efficacy and mental models in learning to program.
In ACM SIGCSE Bulletin, volume 36, pages 171–175.
ACM, 2004.

[12] B. A. Soloman and R. M. Felder. Index of learning styles
questionnaire. NC State University. Available online at:
http://www.engr.ncsu.edu/learningstyles/ilsweb.html
(last visited on 14.02.2015), 2005.

